• 제목/요약/키워드: small-scale structures

검색결과 426건 처리시간 0.025초

A File System for Large-scale NAND Flash Memory Based Storage System

  • Son, Sunghoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권9호
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we propose a file system for flash memory which remedies shortcomings of existing flash memory file systems. Besides supporting large block size, the proposed file system reduces time in initializing file system significantly by adopting logical address comprised of erase block number and bitmap for pages in the block to find a page. The file system is suitable for embedded systems with limited main memory since it has small in-memory data structures. It also provides efficient management of obsolete blocks and free blocks, which contribute to the reduction of file update time. Finally the proposed file system can easily configure the maximum file size and file system size limits, which results in portability to emerging larger flash memories. By conducting performance evaluation studies, we show that the proposed file system can contribute to the performance improvement of embedded systems.

Magneto-transport properties of CVD grown MoS2 lateral spin valves

  • 전병선;이상선;황찬용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2016
  • We have investigated magneto-transport properties in a MoS2 lateral spin-valve structures for different ferromagnetic CoFe electrode shapes and MoS2 channel lengths. For these devices, high quality and large-scale MoS2 thin films were synthesized through sulfurization of epitaxial MoO3 films and these sulfurized-MoO3 thin films properties are in good agreements with measurements on exfoliated MoS2 film. Magneto-transport measurements show a clear rectangular magnetoresistance signal of 0.16% and a spin polarization of 0.00012%. By using the one-dimensional spin diffusion equation, we extracted the spin diffusion length and coefficient, finding them to be 12 nm and $1.44{\times}10-3cm2/s$, respectively. These small values of magnetoresistance and spin polarization could be enhanced by appeasement of conductivity mismatch between the ferromagnet and semiconductor interface.

  • PDF

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation

  • Karami, Behrouz;Shahsavari, Davood;Nazemosadat, Seyed Mohammad Reza;Li, Li;Ebrahimi, Arash
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.349-362
    • /
    • 2018
  • Thermal buckling behavior of porous functionally graded nanobeam integrated with piezoelectric sensor and actuator based on the nonlocal higher-order shear deformation beam theory is investigated for the first time. Its material properties are assumed to be temperature-dependent and varying along the thickness direction according to the modified power-law rule. Note that the porosity with even type is considered herein. The equations of motion are obtained through Hamilton's principle. The influences of several parameters (such as type of temperature distribution, external electric voltage, material composition, porosity, small-scale effect, Ker foundation parameters, and beam thickness) on the thermal buckling of FG nanobeam are investigated in detail.

Wind pressure and buckling of grouped steel tanks

  • Portela, Genock;Godoy, Luis A.
    • Wind and Structures
    • /
    • 제10권1호
    • /
    • pp.23-44
    • /
    • 2007
  • Wind tunnel experiments on small scale groups of tanks are reported in the paper, with the aim of evaluating the pressure patterns due to group effects. A real tank configuration is studied in detail because one tank buckled during a hurricane category 3. Three configurations are studied in a wind tunnel, two with several tanks and different wind directions, and a third one with just one blocking tank. The pressures were measured in the cylindrical part and in the roof of the tank, in order to obtain pressure coefficients. Next, computational buckling analyses were carried out for the three configurations to evaluate the buckling pressure of the target structure. Finally, imperfection-sensitivity was investigated for one of the configurations, and moderate sensitivity was found, with reductions in the maximum load of the order of 25%. The results help to explain the buckling of the tank for the levels of wind experienced during the hurricane.

경관주택의 선정기준과 성향에 관한 연구 -강원도 춘천시 농촌경관인증주택을 중심으로- (A Study on Standard and Tendency of Landscape Housing -Focused on the Rural Landscape Authenticated Housing of Chuncheon City, Gangwon Province-)

  • 심재학;윤영활;최장순
    • 한국농촌건축학회논문집
    • /
    • 제11권3호
    • /
    • pp.19-28
    • /
    • 2009
  • This research aimed at showing an improvement direction in the future by analyzing the tendency to select a rural landscape housing and the characteristics centering around the data of the landscape-authenticated housing executed in Chuncheon City from 2005 to 2008. For 4 years, 25 houses in all were authenticated by Chuncheon City after being selected as landscape housing. As the result of analyzing the authenticated 25 housing, lots of landscape houses were located in natural green areas, and small-scale houses of $99m^2$ or less in the house size were preferred. The structures introducing the nature-friendly materials such as wood, yellow earth and clay continued to increase in the house structure. And in the selection of the authenticated houses, the landscape architecture and the harmony with the surrounding environment had a big effect on the selection.

  • PDF

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.

Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept

  • Ahouel, Mama;Houari, Mohammed Sid Ahmed;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.963-981
    • /
    • 2016
  • A nonlocal trigonometric shear deformation beam theory based on neutral surface position is developed for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The present model is capable of capturing both small scale effect and transverse shear deformation effects of FG nanobeams, and does not require shear correction factors. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived by employing Hamilton's principle, and the physical neutral surface concept. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory

  • Abdulrazzaq, Mohammed Abdulraoof;Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.147-157
    • /
    • 2020
  • In the present research, thermo-elastic buckling of small scale functionally graded material (FGM) nano-size plates with clamped edge conditions rested on an elastic substrate exposed to uniformly, linearly and non-linearly temperature distributions has been investigated employing a secant function based refined theory. Material properties of the FGM nano-size plate have exponential gradation across the plate thickness. Using Hamilton's rule and non-local elasticity of Eringen, the non-local governing equations have been stablished in the context of refined four-unknown plate theory and then solved via an analytical method which captures clamped boundary conditions. Buckling results are provided to show the effects of different thermal loadings, non-locality, gradient index, shear deformation, aspect and length-to-thickness ratios on critical buckling temperature of clamped exponential graded nano-size plates.

펨토초 레이저를 이용한 미세 PR 패터닝 (Femtosecond Laser Lithography for Maskless PR Patterning)

  • 손익부;고명전;김영섭;노영철
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.36-40
    • /
    • 2009
  • Development of maskless lithography techniques can provide a potential solution for the photomask cost issue. Furthermore, it could open a market for small scale manufacturing applications. Since femtosecond lasers have been found suitable for processing of a wide range of materials with sub-micrometer resolution, it is attractive to use this technique for maskless lithography. As a femtosecond laser has recently been developed, both of high power and high photon density are easily obtained. The high photon density results in photopolymerization of photoresist whose absorption spectrum is shorter than that of the femtosecond laser. The maskless lithography using the two-photon absorption (TPA) makes micro structures. In this paper, we present a femtosecond laser direct write lithography for submicron PR patterning, which show great potential for future application.

FIB를 이용한 트라이보층에 대한 연구 (A Study on the Tribolayer using Focused Ion Beam (FIB))

  • 김홍진
    • Tribology and Lubricants
    • /
    • 제26권2호
    • /
    • pp.122-128
    • /
    • 2010
  • Focused Ion Beam (FIB) has been used for site-specific TEM sample preparation and small scale fabrication. Moreover, analysis on the surface microstructure and phase distribution is possible by ion channeling contrast of FIB with high resolution. This paper describes FIB applications and deformed surface structure induced by sliding. The effect of FIB process on the surface damage was explored as well. The sliding experiments were conducted using high purity aluminum and OFHC(Oxygen-Free High Conductivity) copper. The counterpart material was steel. Pin-on-disk, Rotational Barrel Gas Gun and Explosively Driven Friction Tester were used for the sliding experiments in order to investigate the velocity effect on the microstructural change. From the FIB analysis, it is revealed that ion channeling contrast of FIB has better resolution than SEM and the tribolayer is composed of nanocrystalline structures. And the thickness of tribolayer was constant regardless of sliding velocities.