• Title/Summary/Keyword: small-scale incinerator

Search Result 11, Processing Time 0.028 seconds

Combustion and Emission Characteristics of High Calorific Industrial Waste Burned in a Small-scale Incinerator (고 발열량 산업폐기물을 처리하는 소형 소각로의 소각 및 배출 특성)

  • Lee, Gyo-Woo;Lee, Sung-Jun;Kim, Byung-Hwa;Lee, Seung-Woo;Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.42-48
    • /
    • 2002
  • Experiments on burning process of the industrial wastes were performed on a nozzle-type grate in the industrial waste incinerator with a capacity of 160 kilograms per hour. The temporal variations of temperatures and concentrations of the exhaust gas were measured and analyzed. The synthetic leather waste with the moisture content less than 2% was used. The experimental results show that the CO concentration in the exhaust gas exceeds the limit, 600 ppm, and the gas temperature fluctuates too much when 8 kg of waste was supplied every 3 minutes, equivalent to the capacity of 160kg per hour. That is a typical burning mode of this high-calorific industrial waste. When the smaller unit waste input, 6kg per every 2 min 15 seconds was supplied, we could reduce the fluctuations of the furnace temperature and improve the exhaust emissions, especially the CO concentration.

  • PDF

A Study on Sorbent Application of Hard-Shelled Mussel Waste Shell on the Medium/small Scale Waste Incinerator and Flue Gas Desulfurization Process (중.소형 폐기물소각로 및 배연탈황공정용 홍합(Hard-Shelled Mussel) 패각페기물 Sorbent 적용에 관한 연구)

  • 정종현
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • The objective of this study is to investigate the waste recycling possibility, practicability, economic efficiency and acid gas sorbent use of the hard-shelled mussel. This study is to investigate the hydration/calcination reaction and fixed bed reactor. The physical-chemical characteristics of the hard-shelled mussel were analyzed by ICP SEM-EDX, BET and pore volume. Thus, the results could be summarized as follows; Hard-shelled mussel can be used as iron-manufacture and chemical sorbents considering more than 53.7% of the mussel is lime content. The SO$_2$removal efficiency of the hard-shelled mussel after calcined hydration increased thirty times as a result of the higher pore size, specific surface area and pore volume. Also, the CaO content, pore volume, pore size distribution and specific surface area greatly influenced the SO$_2$ and NOx removal reactivity. The optimum particle diameter average of hard-shelled mussel was $\pm$100 mesh, which was applied to the sorbent on the medium/small scale waste incinerator and flue gas desulfurization processes.

A Study on the Combustion Characteristics of the Small Scale Cyclone Incinerate System for Sludge (슬러지용 소형 사이클론 소각 시스템의 연소특성에 대한 연구)

  • Park, Woo-Cheul;Lee, Hyun-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The performance of the small scale cyclone incinerate system (100kg/hr) to process the sewage sludge containing high moisture is evaluated. The incinerate system design is based on properties of the domestic sewage sludge. The combustion characteristics of the incinerate system is tested and analyzed with the various operation conditions of the moisture level, the sludge feed rate and the auxiliary fuel feed rate. The pressure loss of the whole system is appeared relatively small of 700mmAq under the normal operating condition and the temperature distribution of the incinerator internal combustion is maintained less than 1000C. Auxiliary fuel of 4.7 1/hr is required to incinerate 100kg sludge which include 87% moisture. Because the inside temperature of the incinerator is maintained less than $1000^{\circ}C$, it is predicted that the most NOx measured is produced not from the heat during the combustion process but from the oxidation of the N ingredient in the sludge. From the component analysis of ash, the organic matter is not entirely detected. Accordingly, it is estimated that the complete combustion has been accomplished in the incinerator.

  • PDF

Analysis of the Emission Potential of Hazardous Pollutants Produced from disposal of the School Solid Wastes by Small-Scale Incinerator (학교 생활 쓰레기의 성분 분석과 소형소각로 운전에 따른 유해성 오염물의 배출 잠재성 분석 연구)

  • 이병규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.299-308
    • /
    • 2000
  • This study analyzed solid wastes generated from a school. The emission potential of hazardous pollutants generated from incineration of the school solid wastes (SSWs) was analyzed. Components of the SSWs were identified and the SSWs were classified into combustible and non-combustible wasts. The combustible wastes consisted of papers of 56.5^ plastics of 30.2% woods of 7.1% and fibers of 6.1% based on weight of the wastes. The moisture content and the ash content of the combustible wastes were 18~20% and 11~13% respectively. The combustible wastes of the SSWs were incinerated by using a small-scale incinerator. Fly and bottom ashes and volatile organic compounds (VOCs) were collected from the incineration. Also the metal leaching experiments on the fly and bottom ashes were performed, In analysis of metals leached from the ashes the total amounts of metals leached in the acid solution (pH=3) were much greater than those in the neutral solution (pH=5.8~6.2) For the same amounts of the fly and bottom ashes the total amounts of metals leached from the fly ashes were much greater than those from the bottom ashes. The VOCs produced from incineration of the SSWs consisted of aromatics of 42.1% aliphatic alkenes of 26.3% oxidized forms of 17.3% and aliphatic alkanes of 14.3% In addition the considerable amounts of hazardous air pollutants (e.g benzene chloro-benzene and chloro-alkanes) and compounds (e. g, aliphatic alkenes) with high potential of ozone or photochemical smog formation were identified from the incineration experiment of the SSWs.

  • PDF

A Study on the Treatment of Incinerator Wastewater with Biofilm Reactor (접촉산화법에 의한 소각로 배출폐액의 처리에 관한 연구)

  • 신대윤;서동우
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.92-97
    • /
    • 2000
  • The treatment of the washout from small scale incinerator was performed physically, chemically and biologically. The results are as follows. 1. SS, FS removal efficiency of washout wastewater from incinerator was 67.4%, 37.4%, while SS, FS of sewage wastewater was removed 63.2% 35.4% respectively. 2. The optimal conditions for chemical coagulation turned out to be pH 7.5, alum(Al2O3 10%) 30ml/ι and polyelectrolyte(A-601P 0.1%) 4ml/ι. SS 86%, FS 89.5%, BOD 42.5% and CODMn, 63.5% was removed and the removal efficiency of some metals are shown as Pb 93.5%, Zn 86.5% and Fe 80.6%. The concentration of the effluent was SS 9mg/ι, BOD 98.4mg/ι, and CODMn 138.4mg/ι. 3. The removal efficiency in treating washout wastewater of incinerator through HBC-briquet media was getting higher with increasing HRT, and mixed wastewater with 1:1, 1:2 ratio could be met up to the standard limit with higher HRT than 12hr. Under the condition of 1:2 mix ratio and HRT 24 hr, removal efficiency of SS, BOD, CODMn, T-N and T-P was 92.1%, 90%, 87%, 48.2% and 48%, respectively, and the concentration of treated wastewater was SS 2.9 mg/ι, BOD 10.3mg/ι, CODMn 14.1mg/ι, T-N 11.6 mg/ι and T-P 1.3 mg/ι, respectively.

  • PDF

Challenges of Medical Waste Treatment in Fiji (피지국에서의 의료폐기물 처리현황과 문제점)

  • Kim, Daeseon;Bolaqace, Josefa;Rafai, Eric;Lee, Chulwoo
    • Journal of Appropriate Technology
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • Medical waste is any kind of waste that contains infectious material and recommended not to be transferred for infection control. As a means of disposal, incineration has better points than dumping or landfill in the quantity reduction, odorless and nonhazardous. However, open burning and incineration of health care wastes under bad circumstances, can result in the emission of environmental pollutants to air. A burial of biological waste brings pollution of soil and water. Most of sub divisional hospitals in Fiji transfer their medical wastes to divisional hospitals for incineration. In 2011, 62,518 kg of medical waste was incinerated in the three divisional hospitals. However, some medical wastes are considered as general waste and burnt or sent to landfill site, some are buried on site in some sub-divisional hospitals. In this regards, urgent education is necessary for awareness promotion to relevant personnel in medical waste treatment. On site incineration using small scale incinerator is more recommended than transportation of medical wastes treatment in Fiji. Moreover, remotely controllable and fixable small scale of incinerator is more desirable in sub-divisional hospitals. It is recommended that Fiji government to set up a legal framework for medical waste management (MWM), to develop specific guidelines for MWM, to set up a training system for MWM to ensure that all relevant personnel are trained, to develop a monitoring and supervision system for MWM, to clarify the future financing of MWM activities, and to improve the MWM infrastructure.

An Investigation for Air Pollutants Emitted from Small-Scale Incinerators in Highway Service Area (고속도로 휴게소의 소형소각로에서 배출되는 대기오염물질 조사)

  • Jang, Young-Kee;Choi, Sang-Jin;Kim, Kwan;Hong, Min-Sun;Choi, Join-In;Moon, Su-Ho;Kim, Soon-Tae;Kim, Seung-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.539-546
    • /
    • 2002
  • The physicochemical properties of solid wastes generated from seven highway service areas, four branch offices, and one construction site were analyzed in concert with air pollutants including heavy metals emitted from near-by small-scale incinerators. The amount of solid wastes generated from highway areas has been increasing with recent increases in the number of highways and passengers. Twelve incinerators examined in this study generally had capacity smaller than 100 kg/hr, most of which were equipped with cyclone for dust removal. It was seen that the concentrations of the gas-phase air pollutants (e.g., SO$_2$, NO$_{x}$, HCl and H$_2$S) were above the acceptable emission standards except one or two sites. CO concentrations at all incinerators were also higher due to incomplete combustion. In addition, particulate matters showed concentration six times higher at their maximum. The results of heavy metal analysis showed that the concentrations of Cu, Cd, and Ni satisfied the emission standards. whereas Pb at one site and Zn at five sites exceeded the standards. Cr measurement results indicated that 9 of 12 incinerators had higher values than the standard; especially one branch office showed nine times higher than normal concentration. In order to satisfy more stringent emission standards in the near future, it is necessary to install air pollution control system and to develop an intensified management plan.n.

Evaluation of Operation Status for Incineration Facility Using Performance Index (소각시설 이행지표를 활용한 운영 현황 평가)

  • Kim, Jong-Hwan;Park, Joon-Seok;Phae, Chae-Gun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.507-520
    • /
    • 2016
  • This research was performed to evaluate incineration facilities with different scale and type using performance index. Incineration facilities of 28 units, which occupying about 15% of 184 units in nationwide, were selected for questionnaire survey. The facilities were classified in scale with large(${\geq}100t/d$), middle(50~<100 t/d), small(<50 t/d) ones, and in type with stoker, pyrolysis, fluidized bed. Performance index was composed of technological, economical, and environmental items, which have 6, 10, and 30 kinds of questions, respectively. As a result of scale evaluation, large scale facility has higher score than small one in all technological, economical, and environmental items. In overall evaluation of the facilities with different type, stoker incinerator has higher score of 65.3 than 59.0 of fludized bed and 58.3 of pyrolysis. It was shown that there was significant difference in economical evaluation field, in all technological, economical, and environmental items.

Evaluation of Decomposition Characteristics of Organochlorine Pesticides Using Thermal Method (열적방법을 활용한 유기염소계 폐농약의 분해 특성 평가)

  • Kwon, Eun-Hye;Yoon, Young-Sam;Bea, Ji-Su;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.744-753
    • /
    • 2018
  • The Stockholm Convention, which was adopted in Sweden in 2001 to protect human health and the environment, includes regulations for Persistent Organic Pollutant Rotors such as toxic and bioaccumulatives. Currently, there are 28 types of materials. This prohibits and limits the production, use, and manufacture of products. Korea is a member of the Convention, and it is necessary to prepare management and treatment plans to address the POP trends. Thus, we experimentally investigate whether the environmentally stable incineration is achieved when the sample is thermally treated using the Lab-scale (1 kg/hr). The target samples is pesticides in liquid phase and solid phase. In this study, organic chlorinated pesticides and their thermal characteristics were analyzed. We calculated the theoretical air volume based on the element analysis results. Because the interior of the reactor is small, more than 10 times of the air ratio was injected. The retention time was set to at least 4 seconds using a margin. The incineration temperature was $850^{\circ}C$ and $1100^{\circ}C$. Thus, we experimentally investigated whether the environmentally stable incineration was achieved when the sample was thermally treated using the Lab-scale (1 kg/hr). We analyzed five types of exhaust gas; the 02 concentration was high, but the CO amount decreased. Complete combustion is difficult because of the small size of the furnace due to the nature of Lab-scale. The organic chlorine-containing pesticide had an average decomposition rate of 99.9935%. Considering the decomposition rates of organic chlorine-containing pesticide in this study, the incineration treatment at over 2 ton/hour, which is typical for a conventional incinerator, is possible. Considering the occurrence of dioxins and unintentional persistent organic pollutants, it can operate at more than $1,100^{\circ}C$.

An Experimental Study on Fire-Resistant Boom (내화용 오일붐의 내화성에 대한 실험적 연구)

  • Yu J.S.;Sung H.G.;Oh J.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.25-32
    • /
    • 2000
  • Fire-resistant boom is one of the most important facilities in in situ homing of spilled oil. Thermal response of a fire-resistant boom to turning is experimentally investigated in this paper by using an electric furnace and a burning test facility. This test facility is composed of a test tank, a fire boom, a hood for inhaling smoke, an incinerator for burning up gases and thermocouples, etc. Thereby a systematic method of approach in small laboratory scale is developed to study the performance of a fire-resistant boom. Burning test is carried out for the fire boom model which has been developed through the present study. It is shown that the present fire boom model has capability to withstand the high temperature around 800℃ and high rate of heat flux on it due to homing. For more realistic experimental environments, larger dimensions in devices and longer time in experiments are recommended in near future.

  • PDF