• Title/Summary/Keyword: small-scale H

Search Result 424, Processing Time 0.029 seconds

Conceptual design and analysis of rotor for a 1-kW-Class HTS rotating machine

  • Kim, J.H.;Hyeon, C.J.;Quach, H.L.;Chae, Y.S.;Moon, J.H.;Boo, C.J.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • This paper presents a conceptual design and analysis for a 1-kW-class high-temperature superconducting rotating machine (HTSRM) rotor. The designed prototype is a small-scale integration system of a HTSRM and a HTS contactless rotary excitation device (CRED). Technically, CRED and HTSRM are connected in the same shaft, and it effectively charges the HTS coils of the rotor field winding by pumping fluxes via a non-contact method. HTS coils in rotor pole body and toroidal HTS wire in CRED rotor are cooled and operated by liquid nitrogen in cryogen tank located in inner-most of rotor. Therefore, it is crucial to securely maintain the thermal stability of cryogenic environment inside rotor. Especially, we critically consider not only on mechanical characteristics of the rotor but also on cryogenic thermal characteristics. In this paper, we conduct two main tasks covering optimizing a conceptual design and performing operational characteristics. First, rotor parameters are conceptually designed by analytical design codes. These parameters consider to mechanical and thermal performances such as mechanical strength, mechanical rigidity, and thermal heat losses of the rotor. Second, mechanical and thermal characteristics of rotor for 1-kW-class HTSRM are analyzed to verify the feasible operation conditions. Hence, three-dimensional finite element analysis (3D-FEA) method is used to perform these analyses in ANSYS-Workbench platform.

Effect of Operating Condition of Stripping Process on Ammonia Removal for Pre-treatment of Swine Wastewater (축산폐수 전처리를 위한 암모니아 탈기공정의 운전조건이 암모니아 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.86-92
    • /
    • 2004
  • Lab-scale experiments have been carried out to investigate ammonia stripping with a modified spray tower for removing ammonia nitrogen from swine wastewater. The operating conditions such as initial pH, temperature, air flow, hole size of distributor determining the diameter of water drops, and influent solids concentration were closely examined focusing on removal efficiency of ammonia. As a result of the experiment, in order to achieve high rate of ammonia removal by the air stripping system, the air flow rate must be supplied at high rate with sufficiently high initial pH, temperature. The optimum operating condition to meet the residual ammonia concentration of 300 mg/L was the initial pH of 11.0 at $35^{\circ}C$ with the air flow rate of 20 L/min. It also showed that the smaller hole size is, the higher removal rate of ammonia is expected. However, when used a small sized distributor (2 mm), the flooding problem at the upper column occurred due to clogging of the hole. With regard to the influent solids concentration, it was showed that the lower concentration of solids, the higher removal rate of ammonia. The removal of particulate materials in influent led to improve the removal efficiency of ammonia, rather than to control the operating condition including initial pH, temperature, and air flow. The empirical correlation between KLa and operating parameters would be driven as, $K_{La}=(0.0003T-0.0047){\cdot}G^{0.3926}{\cdot}L^{-0.5169}{\cdot}C^{-0. 1849}$. The calculated $K_{La}$ from proposed formula can be used effectively to estimate the optimum reaction time and to calculate the volume of modified spray tower system.

Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST

  • Huh, Jeongmoo;Ahn, Byeonguk;Kim, Youngil;Song, Hyunki;Yoon, Hosung;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.512-521
    • /
    • 2017
  • This paper reports development process of a university-based sounding rocket using simplified hybrid rocket propulsion system for low-altitude flight application. A hybrid propulsion system was tried to be designed with as few components as possible for more economical, simpler and safer propulsion system, which is essential for the small scale sounding rocket operation as a CanSat carrier. Using blow-down feeding system and catalytic ignition as combustion starter, 250 N class hybrid rocket system was composed of three components: a composite tank, valves, and a thruster. With a composite tank filled with both hydrogen peroxide($H_2O_2$) as an oxidizer and nitrogen gas($N_2$) as a pressurant, the feeding pressure was operated in blowdown mode during thruster operation. The $MnO_2/Al_2O_3$ catalyst was fabricated for propellant decomposition, and ground test of propulsion system showed the almost theoretical temperature of decomposed $H_2O_2$ at the catalyst reactor, indicating sufficient catalyst efficiency for propellant decomposition. Auto-ignition of the high density polyethylene(HDPE) fuel grain successfully occurred by the decomposed $H_2O_2$ product without additional installation of any ignition devices. Performance test result was well matched with numerical internal ballistics conducted prior to the experimental propulsion system ground test. A sounding rocket using the developed hybrid rocket was designed, fabricated, flight simulated and launch tested. Six degree-of-freedom trajectory estimation code was developed and the comparison result between expected and experimental trajectory validated the accuracy of the developed trajectory estimation code. The fabricated sounding rocket was successfully launched showing the effectiveness of the simplified hybrid rocket propulsion system.

Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind

  • Kim, Myeong Joon;Park, Kyung Sun;Lee, Dae-Young;Choi, Cheong-Rim;Kim, Rok Soon;Cho, Kyungsuk;Choi, Kyu-Cheol;Kim, Jaehun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.237-244
    • /
    • 2017
  • Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker (~7.4 nT) than that of MCs (~10.6 nT). Also, the average duration time and expansion speed of SMFRs are ~2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of ~10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H < -50 nT (for identification of storm occurrence) and AL < -200 nT (for identification of substorm occurrence), we found that for 88 SMFR events (corresponding to 28.5 % of the total SMFR events), substorms occurred after the impact of SMFRs, implying a possible triggering of substorms by SMFRs. In contrast, we found only two SMFRs that triggered storms. We emphasize that, based on a much larger database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.

Surveying for Barn Facilities of Dairy Cattle Farms by Holding Scale (젖소농가의 사육규모별 축사시설 분석)

  • Min, B.R.;Seo, K.W.;Choi, H.C.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.251-262
    • /
    • 2009
  • In this research dairy cattle barn facilities what are 4,198 houses hold over 50 heads were surveyed by scale and province. Full-time farms hold over 50 heads breed total 344,514 heads. Each of Farms holds 50 to 99 heads were 79.8 percent and breed average 82.1 heads. Dairy cattle barns were constructed september 1995 averagely. Each of barns have $1,740.0\;m^2$ scale. The construction type of dairy cattle barn was almost litter barn type 84.0%, freestyle type 5.1%, mooring+litter ground type 17.3% and other types 4.4%. The litter barn type was popular in small farms. But in large farms, freestyle type was popular than small farms. The construction type of dairy cattle barn was almost litter barn type 84.0%, freestyle type 5.1%, moohng+ltter ground type 17.3% and other types 4.4%. Type of dairy cattle robotic milking system was pipeline 41.5%, herringbone 22.8% and tandem 35.8%. The pipeline type was popular in small farms which have 50~99 heads. But in large farms which have over 200 heads, tandem type was popular than small farms. Proportion of floor type of dairy cattle barn was almost litter type 94.9%. Scraper type was popular in large farms than in small farms. Proportion of roof type of dairy cattle barn was slate 32.5%, vinyl 16.3%, sunlight 11.1%, panel 10.9, zinc plate 8.8 and steel plate 8.3%. Roof type was lots of slate type before 1995. But vinyl type is increasing after 1995. Proportion of wall type of dairy cattle barn was almost open type 83.3% and winch-curtain 26.8%. Utilization period of dairy cattle barn was 9.2 years about milker, 7.9 years about automatic feeder, 9.2 years about waterer and 10.4 years about electric facilities. In this results, there were lots of improvements about automatic feeder.

  • PDF

Synthesis of Enzyme-Containing PEG Hydrogel Nanospheres for Optical Biosensors (광바이오센서용 효소를 함유한 PEG 수화젤 나노입자의 합성)

  • Kim, Bum-Sang
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.613-616
    • /
    • 2005
  • In this word as the first step to develop optical biosensors for a single cell level analysis, the preparation method of nano-scale polymer hydrogel spheres containing an enzyme was set up and the feasibility of the spheres as optical biosensors was investigated. The horseradish peroxidase (HRP) was encapsulated in the PEG hydrogel spheres by suspension photopolymerization, yielding spheres of the average size of 305 nm. After the polymerization, the incorporation and activity of HRP within the spheres were determined by the production of fluorescence resulted from the enzymatic reaction between HRP and $\H_{2}O_{2}$. The fluorescence emission response of the HRP-loaded PEG hydrogel spheres increased by nearly 300$\%$ as hydrogen peroxide concentration was changed from 0 to 11 nM in the presence of Amplex Red. The results suggest that the method to prepare the PEG hydrogel nanospheres containing an enzyme could be used for developing optical biosensors to measure various analytes in the very small samples like a single cell.

Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration (2단 망간모래여과에 의한 고농도 망간 처리)

  • Kim, Chung H.;Yun, Jong S.;Lim, Jae L.;Kim, Seong S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

The Development of Integrated Power Quality Diagnosis System for Power System (전력계통 전력품질 통합진단시스템 개발)

  • Kwak, N.H.;Jeon, Y.S.;Park, S.H.;Lee, I.M.;Park, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.277-279
    • /
    • 2005
  • Recently, due to the increase of power conversion devices and nonlinear loads with the development of information, communication and control technologies, the instantaneous minute interruption factors such as voltage & current harmonics, surge occurring frequency, instantaneous voltage variation, voltage unbalance, flicker etc. have greatly threatened the power quality, and the deterioration of electric power facilities and the functional error of controllers are increasing. As such an instantaneous minute interruption appears to be small and local, accurate evaluation with measurement is difficult and total analysis system is required through a wide range of power quality effect analysis such as the simultaneous measurement on various power supply phenomena and the analysis on the interrelation with system loads. Most of conventional power quality diagnosis equipments have beer developed and applied, which were able to measure the stability rate of frequency, the stability rate of voltage, the electricity-failure duration etc, However, they were insufficient to analyze the system present situation, understand the cause of the failure occurred by the problem of power quality and analyze out the phenomena. Accordingly, this study will address the development of the system for a wide range of power quality diagnosis over the present level, the system for supporting the determination such as the analysis on risk factors, failure mode and impact, the system for harmonic evaluation based on international standards(IEC 61000 Series) and the total power quality diagnosis network & system with the extension and openness as a local and national-scale broadband power quality diagnosis system.

  • PDF

Compensating algorithm of the secondary voltage for CCVT considering the hysteresis of a iron core (철심의 히스테리시스 특성을 고려한 CCVT 2차 전압 보상방법)

  • Kang, Y.C.;Lee, B.E.;Zheng, T.Y.;Lee, J.H.;Kim, Y.H.;Park, J.M.;So, S.H.;Jang, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.261-263
    • /
    • 2005
  • In the extra and ultra high voltage system, the coupling capacitor voltage transformer (CCVT) measures the primary voltage with a small scale of voltage transformer (VT). However, the CCVT generates errors caused by the hysteresis characteristics of iron core and by the ferroresonance, inevitably. This paper proposes a compensation algorithm for the secondary voltage of a CCVT considering the hysteresis characteristics of an iron core. The proposed algorithm calculates the seconda교 current of a VT by summing the current flowing the ferroresonance circuit and the burden current; it estimates the secondary voltage of a VT; then the core flux is calculated by integrating of the secondary voltage of a VT, then estimates the exciting current using ${\lambda}-i$ characteristic of the core. The method calculates a primary voltage of a VT considering the estimated primary current. Finally, the correct voltage is estimated by compensating the voltage across the inductor and capacitor. The performance of the proposed algorithm was tested in a 345kV transmission system. The test results show that the proposed method can improve the accuracy of the seconda교 voltage of a CCVT.

  • PDF

Elution characteristics of lime-based granular alkaline material and applicability of phosphorus crystallization processes (석회계 입상알칼리재의 용출특성과 이를 이용한 인 결정화공정의 적용성)

  • Chang, Hyang-Youn;Park, Na-Ri;Jang, Yeo-Ju;Ahn, Kwang-Ho;Lim, Hyun-Man;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.577-586
    • /
    • 2017
  • One of the major sources causing eutrophication and algal blooms of lakes or streams is phosphorus which comes from point and nonpoint pollution sources. HAP (hydroxyapatite) crystallization using granular alkaline materials can achieve the decrease of phosphorus load from wastewater treatment plants and nonpoint pollution control facilities. In order to induce HAP crystal formation, continuous supply of calcium and hydroxyl ions is required. In this research, considering HAP crystallization, several types of lime-based granular alkaline materials were prepared, and the elution characteristics of calcium and hydroxyl ions of each were analyzed. Also, column tests were performed to verify phosphorus removal efficiencies of granular alkaline materials. Material_1 (gypsum+cement mixed material) achieved the highest pH values in the column tests consistently, also, Material_2 (gypsum+slag mixed material) and Material_3 (calcined limestone material) achieved over pH 9.0 for 240 hours (10 days) and proved the efficiencies of long-term ion supplier for HAP crystallization. In the column tests using Material_3, considerable pH increase and phosphorus removal were carried out according to each linear velocity and filtration depth. T-P removal efficiencies were 87.0, 84.0, 68.0% and those of PO4-P 100.0, 97.0, 80.0% for linear velocity of 1.0, 2.5, 5.0 m/hr respectively. Based on the column test results, the applicability of phosphorus removal processes for small-scale wastewater treatment plants and nonpoint pollution control facilities was found out.