• Title/Summary/Keyword: small wind turbine generator

Search Result 75, Processing Time 0.032 seconds

A Study on the Parallel Operation Strategy of Small Wind Turbine System for Battery Charging (배터리 충전을 위한 소형풍력 발전 시스템의 병렬 운전방안에 관한 연구)

  • Son, Yung-Deug;Ku, Hyun-Keun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.549-556
    • /
    • 2014
  • This study proposes a parallel operation strategy for small wind turbine systems. A small wind turbine system consists of blade, permanent magnet synchronous generator, three-phase diode rectifier, DC/DC buck converter, and the battery load. This configuration has reliability, simple control algorithm, high efficiency, and low cost. In spite of these advantages, the system stops when unexpected failures occur. Possible failures can be divided into mechanical and electrical parts. The proposed strategy focuses on the failure of electrical parts, which is verified by numerical analysis through equivalent circuit and acquired general formula of small wind power generation systems. Simulation and experimental results prove its efficiency and usefulness.

Characteristic analysis and experiment of axial flux type permanent magnet synchronous generator for small wind turbine (소형풍력발전 시스템용 축방향 자속형 영구자석 동기발전기의 특성해석과 실험)

  • You, Yong-Min;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.704_705
    • /
    • 2009
  • This paper presents a axial flux permanent magnet synchronous generator(AFPMSG), which is suitable for both vertical-axis and horizontal-axis wind turbine generation system. The design and construction features of the AFPMSG are reviewed. The characteristic analysis is performed such as cogging torque and e.m.f waveform, with the aid of a 3D finite element method. The experimental results confirm the characteristic analysis developed.

  • PDF

Design and Performance Analysis of Axial-Flux Permanent-Magnet Generator for Wind Energy System Applications (횡자속형 영구자석 풍력발전기 설계 및 특성해석)

  • Hwang, Don-Ha;Kang, Do-Hyun;Kim, Yong-Joo;Bae, Sung-Woo;Choi, Kyeong-Ho;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.949-951
    • /
    • 2002
  • Permanent-magnet (PM) synchronous generator is feasible for use with a wind turbine, because the generator for wind power requires variable-speed generation, light weight, and high torque. In this paper, basic design and construction of an axial-flux permanentmagnet generator with power output at 60 [Hz], 300 [r/min] for wind energy system is introduced. Finite-element method (FEM) is applied to analyze generator performance. In order to save time, equivalent analysis model is developed. The performance of the proposed generator at no-load and resistive load are compared, and power output and voltage at various speed and loads are compared as well. The results of FE analysis show that this PM generator is a useful solution for small-scale wind-turbine applications.

  • PDF

Sensorless Fuzzy MPPT Control for a Small-scale Wind Power Generation System with a Switched-mode Rectifier (SMR 회로를 이용한 소형풍력발전 시스템의 센서리스 퍼지 MPPT제어)

  • Lee, Joon-Min;Park, Min-Gi;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.916-923
    • /
    • 2014
  • This paper proposes a low-cost switched-mode rectifier (SMR) for a small-scale wind turbine with a permanent magnet synchronous generator (PMSG) system. Also, a sensorless Fuzzy MPPT control is realized by the proposed system. In the PMSG system with the SMR, the synchronous impedance can be replaced as the input inductor of a boost converter. Moreover, the sensorless MPPT control using the Fuzzy technique is carried out by the duty-ratio regulation of the SMR. The relation between the generating power and the duty-ratio is ruled by the chain rule. The wind turbine model is implemented by the squirrel cage induction motor and generated the variable torque when the generator speed is varied. To verify the performance of the proposed system, simulation and experimental results are executed.

Design of a wind turbine generator with low cogging torque by using evolution strategy (진화론적 알고리즘을 이용한 코깅토크가 적은 풍력발전기의 설계)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Lee, Hee-Joon;Kim, Yong-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.755-760
    • /
    • 2016
  • The demand for independent generators using renewable energy has been increasing. Among those independent generators, small wind turbine generators have been actively developed. Permanent magnets are generally used for small wind turbine generators to realize a simple structure and small volume. On the other hand, cogging torque is included due to the structure of the permanent magnet synchronous machine, which can be the source of noise and vibration. The cogging torque can be varied by the shape of the permanent magnet and core, and it can be reduced using the appropriate design techniques. This paper proposes a design technique that can reduce the cogging torque by changing the shape of the permanent magnets for SPMSM (Surface Permanent Magnet Synchronous Motor), which is used widely for small wind turbine generators. Evolution Strategy, which is one of non-deterministic optimization techniques, was adopted to find the optimal shape of the permanent magnets that can reduce the cogging torque. The angle and outer diameter of permanent magnet were set as the design variable. A 300W class wind turbine generator, whose pole/slot combination was 8 poles/18 slots, was designed with the proposed design technique. The properties of the generator, including the cogging torque and output voltage, were calculated. The calculation results showed that the cogging torque of the optimized model was reduced compared to that of the initial model. The design technique proposed by this paper can be an effective measure to reduce the cogging torque.

The Comparison of Output Characteristic by the Electro-magnetic Structure Modification of the Axial Flux Type Permanent Magnet Synchronous Generator (종축 자속형 영구자석 동기 발전기의 전자기적 구조 변경에 따른 출력특성 비교)

  • Jung, Tae-Uk;Bae, Byung-Duk;Kim, Hoe-Cheon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.42-48
    • /
    • 2011
  • Generally, the structure without the stator core Axial Field Permanent Magnet (AFPM) generator was simple and there was nearly no cogging toque. And because it had the wide driving rate area, it had been being mainly used in the small wind power generation system. However, AFPM generator with non-slotted stator can't generate high voltage at low wind speed due to long air-gap. It is the reason of output efficiency drop. Therefore, in this paper, the AFPM synchronous generator with internal rotor and dual slotted stators for the small wind turbine is studied, and deal with a cogging torque minimization through the determination of optimum pole-arc ratio.

Stochastic Stability Analysis of the Power System Incorporating Wind Power using Measurement Wind Data

  • Parinya, Panom;Sangswang, Anawach;Kirtikara, Krissanapong;Chenvidhya, Dhirayut
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1110-1122
    • /
    • 2018
  • This paper proposes an alternative method to evaluate the effect of wind power to the power system stability with small disturbance. Alternatively, available techniques for stability analysis of a power system based on deterministic methods are less accurate for high penetration of wind power. Numerical simulations of random behaviors are computationally expensive. A stochastic stability index (SSI) is proposed for the power system stability evaluation based on the theory of stochastic stability and energy function, specifically the stochastic derivative of the relative well-defined energy function and the critical energy. The SSI is implemented on the modified nine-bus system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) wind turbine is characterized and modeled using measured wind data from several sites in Thailand. Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the aggregated effect of wind turbines. With the proposed method, the system behavior is properly predicted and the stability is quantitatively evaluated with less computational effort compared with conventional numerical simulation methods.

Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (2) - Electromagnetic Losses and Performance Analysis - (전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (2) - 전자기 손실 해석 및 성능 평가 -)

  • Ko, Kyoung-Jin;Jang, Seok-Myeong;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.50-62
    • /
    • 2011
  • In this paper, analytical techniques for performance characteristics analysis of wind power generator with outer permanent magnet rotor are proposed. Furthermore, the proposed analytical techniques are validated by performance experiments of the manufactured generator. In this part, characteristic equations of losses such as copper loss, core loss are derived. Using the derived loss characteristic equations, electrical parameters obtained in [15] and d-q axes method, constant load and constant speed characteristics of wind power generator are analyzed. And then, to analyze performance of wind power system according to wind speed, d-q analysis model considering wind turbine characteristics is proposed. Finally, the obtained performance characteristics results are validated in comparison with those by experiments.

Vibration Monitoring and Analysis of a 6kW Wind Stand Alone Turbine Generator (6kW 독립형 풍력발전기의 진동 모니터링 및 분석)

  • Kim, Seock-Hyun;Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jeong-Wan;Park, Mu-Yeol;Park, Hae-Gyun;Kim, Tae-Hyeong
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.81-86
    • /
    • 2005
  • A vibration monitoring system for a small class of wind turbine (W/T) is established and operated. The monitoring system consists of monolithic integrated chip accelerometer for vibration monitoring, anemometers for wind data acquisition and auxiliary sensors for atmospheric data. Using the monitoring system, vibration response of a 6kW W/T generator is investigated. Acceleration data of the W/T tower under various operation condition is acquired in real time using LabVIEW and is remotely transferred from the test site to the laboratory in school by internet. Vibration state of the tower structure is diagnosed within the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site.

  • PDF

Study on Cogging Torque Reduction for Small Wind Turbine AFPM Generator of Double Stator Structure (이중 고정자 구조의 소형풍력터빈용 AFPM 발전기의 코깅토크 저감에 관한 연구)

  • Jung, Tae-Uk;Bae, Byung-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • The cogging torque is important to the cut-in wind speed. And, it causes the acoustic noise and the vibration on the machine. This paper presents a 3D FEA(Finite Element Analysis) to evaluate the effect of magnet skew and stator displacement on cogging torque reduction, for double core AFPM(Axial Flux Permanent Magnet) generator. As a result, the magnet skew and the stator side displacement are proved excellent techniques to reduce the cogging torque.