• Title/Summary/Keyword: small intestine submucosa (SIS)

Search Result 4, Processing Time 0.021 seconds

Sustained Release of Proteins Using Small Intestinal Submucosa Modified PLGA Scaffold (SIS로 개질된 PLGA 담체에서의 단백질의 서방화)

  • Ko, Youn-Kyung;Choi, Myung-Kyu;Kim, Soon-Hee;Kim, Geun-Ah;Lee, Hai-Bang;Rhee, John-M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, we fabricated poly (lactide-co-glycolide) (PLGA) scaffold modified with small intestinal submucosa (SIS) as a drug delivery matrix of bioactive molecules. SIS derived from the submucosa layer of porcine intestine has been widely used as biomaterial because of low immune response. PLGA scaffold was prepared by the method of solvent casting/salt leaching. Novel composite scaffolds of SIS/PLGA were manufactured by simple immersion method of PLGA scaffold in SIS solution under vacuum. SEM observation shows that PLGA and SIS/PLGA scaffolds have interconnective and open pores. Especially, SIS/PLGA scaffold showed that micro-sponge of SIS with interconnected pore structures were formed in the pores of PLGA scaffold. In order to assay release profile of proteins, we manufactured FITC conjugated BSA loaded PLGA and SIS/PLGA scaffold. And the release amount was identified by fluorescence intensity using the fluorescence spectrophotometer. The initial burst of BSA containing SIS/PLGA scaffolds was lower than that of PLGA scaffolds resulting in constant release. And release of BSA in SIS/PLGA scaffold was fast and incremental because of the increased content of BSA. In conclusion, we confirmed that penetrated SIS solution prevented the initial burst of BSA and PLGA modified with SIS scaffold is useful as protein carriers with controlled release pattern.

Preparation and Characterization of Sponge Using Porcine Small Intestinal Submucosa (돼지의 소장 점막하 조직을 이용한 스폰지의 제조 및 특성 결정)

  • 신혜원;김선화;장지욱;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.194-200
    • /
    • 2004
  • Porcine small intestine submucosa (SIS) has been widely used as a biomaterial without immunorejection responses. Crosslinked SIS sponges were characterized for the possibility of the bio-interactive wound dressings and tissue engineered scaffolds. SIS powders were dissolved in 3% acetic acid aqueous solution at 48hrs followed by pouring into mold and then fabricated by freeze-drying method. SIS sponge was prepared by crosslinked with 1-ethyl-(3-3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) solution (deionized water: ethanol=5:95) with 1-100mM concentration for 24 hrs and Iyophilized. SIS sponges were characterized by scanning electron microscopy, differential scanning calorimeter, and Fourier transform infrared spectrometer and were tested their porosity and water absorption ability. It was observed that the concentration of EDC might be exceeded 50 mM to get good physical characteristics. In conclusion, it seems that SIS sponge could be very useful for the applications of wound healing and tissue construction.

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

Comparison between Poly(lactic-co-glycolic acid) Films Contained Natural Polymers on Adhesion and Proliferation of Schwann Cells (천연 고분자가 함유된 락타이드 글리콜라이드 공중합체 필름에서 슈반세포의 부착과 증식 거동 비교평가)

  • Ko, Hyun Ah;Jang, Ji Eun;Kim, Hyeongseok;Park, Chan Hum;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.164-170
    • /
    • 2014
  • This study was designed to find an appropriate biomaterial to proliferate Schwann cell (SC). Poly(lactic-co-glycolic acid) (PLGA) films mixed with demineralized bone particle (DBP), small intestine submucosa (SIS), and silk were fabricated by a solvent casting method. Analysis of MTT, SEM and RT-PCR were performed to confirm adhesion and proliferation of SC. Contact angle of films was assayed for hydrophilicity of films. We confirmed that PLGA/DBP 20% film showed higher hydrophilicity, promoted adhesion and proliferation of SC than other films. It was concluded that PLGA/DBP film can be applied for the scaffold biomaterials for the regeneration of central nerve system.