• Title/Summary/Keyword: small grain

Search Result 768, Processing Time 0.031 seconds

Development of the breeding materials with diverse grain size and shape in japonica rice

  • Park, Hyun-Su;Shin, Woon-Chul;Baek, Man-Kee;Nam, Jeong-Kwon;Jeong, Jong-Min;Park, Seul-Gi;Kim, Choon-Song;Cho, Young-Chan;Kim, Bo-Kyeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.67-67
    • /
    • 2017
  • We developed the breeding materials with diverse grain size and shape in japonica rice. Grain size and shape are important factors affecting consumer preference and choice. However, most of Korean japonica rice cultivars have small, short, and round grain. To diversify the grain size and shape of japonica rice, we conducted the breeding program using donor parents, Jizi1560 and Jizi1581. Jizi1560 and Jizi1581 are japonica germplasm with extremely large grain. Four crosses between the each donor parents and high yielding japonica rice cultivars, Deuraechan and Boramchan, were constructed and then anther culture method was applied. We obtained 290 doubled-haploid (DH) lines with appropriated morphological traits and selected 91 DH lines with diverse grain size and shape. The grain related-traits of the selected DH lines showed a higher diversity when compared with 319 cultivars developed by NICS (264 japonica, 13 black, and 32 Tongil type cultivars). We designated the selected DH lines, four parents, and Daeripbyeo 1, large grain japonica cultivar, as the breeding materials for further analysis. The breeding materials were classified into five groups, A to E, based on the grain-related traits. Group A (including Jizi1581) and Group B (including Daeripbyeo 1) showed similar grain width, whereas Group A exhibited longer grain length and heavier grain weight. Group C (including Deuraechan and Boramchan) showed shorter and rounder grain shape and smaller grain size than any other groups. Group D including solely Jizi1560 had extremely large grain, such as the longest grain length, width, and thickness and heaviest grain weight. Group E including only two DH lines had long and slender grain shape, so that showed the highest ratio of length to width. The grain size and shape of the breeding materials exhibited beyond the characteristics of previously developed Korean japonica cultivars. The breeding materials will be applied in the breeding programs to diversify the grain size and shape of japonica rice.

  • PDF

Control the crystal size by varying concentrations of precursors for the planar perovskite solar cells

  • Xie, Lin;Hwang, Heewon;Kim, Minjung;Kim, Kyungkon
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.79-81
    • /
    • 2015
  • The influence of the grain size of the $CH_3NH_3PbI_3$ on the solar cell performance is investigated by controlling the ratio between $CH_3NH_3I$ and $PbI_2$ precursors. As the concentration of the precursors increased from 1.0M to 2.0M, the $CH_3NH_3PbI_3$ grain size increased from ~100nm to ~400nm. The solar cell utilizing the $CH_3NH_3PbI_3$ with large grain size shows improved photocurrent compared to the solar cell utilizing $CH_3NH_3PbI_3$ with small grain size, which is ascribed to the reduced recombination at the boundaries of grains.

STUDIES ON SOLAR DRYING FOR ROUCH RICE

  • Liu, Dao-Bei;Chen, Yu-Bai
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.877-885
    • /
    • 1993
  • Three types of solar grain dryers, namely , the solar grain bin dryer, the solar greenhouse rotary drum dryer and small scale solar green house tray dryer, have been tested. The results showed that each type of solar grain dryer has its feature. These solar drying units have three main advantages : (1) Required commercial energy to remove 1Kg moist from rough rice is only 5.3% to 15.8% of the energy consumed by common heated dryer : 2) The area of solar drying system is only about 10% of the area of the sunny ground to give equal drying capacity ; (3) There are good drying quality in the moisture uniform , germination percentage, and grain color.

  • PDF

A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position (Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구)

  • Son, S.C.;Park, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

Transformation Behavior on Heat Treatment Condition in Grain-Refined Cu-Zn-Al Shape Memory Alloy (결정립 미세화된 Cu-Zn-Al 형상기억합금의 열처리 조건에 따른 변태거동)

  • Kang, J.W.;Jang, W.Y.;Yang, G.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.34-43
    • /
    • 1991
  • A small amount of misch metal and/or Zr was added as a dopant to 70.5wt----Cu-26wt----Zn-3.5wt----Al shape memory alloy in order to study the effect of grain refinement and heat treatments on the transformation behavior, stabilization of martensite, and shape memory ability. It was found that the addition of misch metal and Zr was very effective for reducing the grain size. The fracture mode has been changed from intergranular brittle fracture to ductile fracture with void formation and coalescence by the addition of misch metal and Zr. Aging of the ${\beta}$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The hysteresis of transformation temperature ${\Delta}T(A_s-M_s)$ has an increasing tendancy by grain refinement. The crystal structure of martensite was identified as monoclinic structure. As the grain size decreased, martensite stabilization more easily occured and the shape, memory ability has been reduced by the grain size refined.

  • PDF

Effect of Quenching Temperature Change on Hardenability of AISI 51B20 Boron Steel (AISI 51B20 보론첨가강의 경화능에 미치는 오스테나이트화 온도의 영향)

  • Kim, Heon-Joo;Park, Moo-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.315-322
    • /
    • 2010
  • Effect of hardenability, grain size and microstructural change according to the change of austenitizing temperature was analyzed in Jominy hardenability test of AISI 51B20 steel. Grain growth was small, 7 ${\mu}m$ and 12 ${\mu}m$ austenite grain sizes at austenitizing temperature of $900^{\circ}C$ and $1000^{\circ}C$, respectively, while rapid grain growth was observed up to 30 ${\mu}m$ austenite grain size at austenitizing temperature of $1100^{\circ}C$. As austenitizing temperature increased from $900^{\circ}C$ to $1100^{\circ}C$, hardenability in the region within 15 mm from end-quenched surface decreased due to the grains growth of bainite and martensite mixture, on the other hand the hardenability in the region exceeding 15 mm from end-quenched surface increased. Increased hardenability was attributed to different microstructures; pearlite, fine pearlite and bainite, and bainite and martensite structures at austenitizing temperature of $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$, respectively.

A Study on the Mechanical Properties of $ZrO_2$ Based Composite ($ZrO_2$를 이차상으로한 복합체의 기계적 특성)

  • 신동우;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.76-84
    • /
    • 1985
  • Mechanical property enhancing mechanisms of $Al_2O_3-ZrO_2$ two phase ceramic composites were studied for several compositions of different $ZrO_2$/$Al_2O_3$ ratio. Microstructural analysis of $Al_2O_3-ZrO_3$(pure) composites indicated that pre-existing microcrack due to larger $ZrO_2$ particle at grain boundary extended along alumina grain boundaries within process zone. Microcracks also nucleated when very small $ZrO_2$ particles at the grain boundaries transformed to monoclinic phase at near of main crack tip. These types of microcracks could contribute to the toughening achieved by creating additional crack surface area during crack propagation. Microstructural analyses also showed that the average grain size and abnormal grain size of $Al_2O_3$ were decreased with increasing $ZrO_2$ vol% in $Al_2O_3$ matrix. As a result it could be concluded as follows In TEX>$Al_2O_3-ZrO_3$(pure) system 1. Microcrack nucleation (stress-induced microcracking) and extension was effective mechanism for absorpiton of fracture energy 2, More narrow distribution and smaller grain size of $Al_2O_3$ due to $ZrO_2$particles mainly contributed to main-tatin the strength and hardness.

  • PDF

The Effect of grain size on the damping capacity of Fe-26Mn-2Al alloy (Fe-26Mn-2Al 합금의 진동 감쇠능에 미치는 결정립 크기의 영향)

  • Kang, C.Y.;Eom, J.H.;Kim, H.J.;Sung, J.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.115-120
    • /
    • 2007
  • The effect of grain size on the damping capacity of Fe-26Mn-2Al alloy studied in this paper has been investigated after changing the microstructure by cold rolling and changing grain size. Micro structures in Fe-26Mn-2Al at room temperature consist of a large quantity of austenite and a small quantity of ${\varepsilon}\;and\;{\alpha}'$ martensite. And ${\varepsilon}\;and\;{\alpha}'$ martensite was increased by increasing the degree of cold rolling. The content of deformation induced martensite was increased with increasing the degree of cold rolling. Damping capacity was linearly increased with increasing ${\varepsilon}$ martensite content, which suggests that stacking faults and ${\varepsilon}$ martensite variant boundaries are the principle damping sources. With increasing the grain size in Fe-26Mn-2Al alloy, the damping capacity was increased due to increasing the volume fraction of ${\varepsilon}$ martensite by decrement in stability of austenite phase. With decreasing the grain size, the content of deformation induced martensite was decreased and the damping capacity was decreased.

  • PDF

Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films with Various Drying Temperature for FRAM Applications (FRAM 응용을 위한 건조온도에 따른 BLT 박막의 강유전 특성)

  • 김경태;김동표;김창일;김태형;강동희;심일운
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2003
  • Ferroelectric lanthanum-substituted Bi$_4$Ti$_3$O$_{12}$(BLT) thin films were fabricated by spin-coating onto a Pt/Ti/SiO$_2$/Si substrate by metalorganic decomposition technique. The grain size in BLT thin films were prepared with controlled by various drying process. The effect of grain size on the crystallization and ferroelectric properties were investigated by x-ray diffraction and field emission scanning electron microscope. The dependence of crystallization and electrical properties are related to the grain size in BLT thin films with different drying temperature. The remanent polarization of BLT thin film increases with the increasing grain size. The value of 2P$_{r}$ and E$_{c}$ of BLT thin film dried at 45$0^{\circ}C$ were 25.9 $\mu$C/$\textrm{cm}^2$ and 85 kV/cm, respectively. The BLT thin film with larger grain size has better fatigue properties. The fatigue properties revealed that small grained film showed more degradation of switching charge than large grained films.lms.s.

Microstructure and Mechanical Behavior of Ultrafine Grained Bulk Al Processed by High Pressure Torsion of the Al Powders (고압비틀림 성형 공정에 의한 Al 분말의 초미세결정 벌크화 및 특성 평가)

  • Joo, Soo-Hyun;Yoon, Seung-Chae;Lee, Chong-Soo;Kim, Hyong-Seop
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2010
  • Bulk nanostructured metallic materials are generally synthesized by bottom-up processing which starts from powders for assembling bulk materials. In this study, the bottom-up powder metallurgy and High Pressure Torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. After the HPT process at 473K, the disk samples reached a steady state condition when the microstructure and properties no longer evolve, and equilibrium boundaries with high angle grain boundaries (HAGBs) were dominant. The well dispersed alumina particles played important role of obstacles to dislocation glide and to grain growth, and thus, reduced the grain size at elevated temperature. The small grain size with HAGBs resulted in high strength and good ductility.