• Title/Summary/Keyword: small RNA (sRNA)

Search Result 342, Processing Time 0.033 seconds

Thymosin Beta-4, Actin-Sequestering Protein Regulates Vascular Endothelial Growth Factor Expression via Hypoxia-Inducible Nitric Oxide Production in HeLa Cervical Cancer Cells

  • Ryu, Yun-Kyoung;Lee, Jae-Wook;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Vascular endothelial growth factor (VEGF) is an important regulator of neovascularization. Hypoxia inducible nitric oxide (NO) enhanced the expression of VEGF and thymosin beta-4 ($T{\beta}4$), actin sequestering protein. Here, we investigated whether NO-mediated VEGF expression could be regulated by $T{\beta}4$ expression in HeLa cervical cancer cells. Hypoxia inducible NO production and VEGF expression were reduced by small interference (si) RNA of $T{\beta}4$. Hypoxia response element (HRE)-luciferase activity and VEGF expression were increased by the treatment with N-(${\beta}$-D-Glucopyranosyl)-N2-acetyl-S-nitroso-D, L-penicillaminamide (SNAP-1), to generate NO, which was inhibited by the inhibition of $T{\beta}4$ expression with $T{\beta}4$-siRNA. In hypoxic condition, HRE-luciferase activity and VEGF expression were inhibited by the treatment with $N^G$-monomethyl-L-arginine (L-NMMA), an inhibitor to nitric oxide synthase (NOS), which is accompanied with a decrease in $T{\beta}4$ expression. VEGF expression inhibited by L-NMMA treatment was restored by the transfection with pCMV-$T{\beta}4$ plasmids for $T{\beta}4$ overexpression. Taken together, these results suggest that $T{\beta}4$ could be a regulator for the expression of VEGF via the maintenance of NOS activity.

Cold-Seep Sediment Harbors Phylogenetically Diverse Uncultured Bacteria

  • Cho, Jae-Chang;Lee, Sang-Hoon;Oh, Hae-Ryun;Lee, Jung-Hyun;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.906-913
    • /
    • 2004
  • A culture-independent molecular phylogenetic survey was carried out on the bacterial community in cold-seep sediment at Edison Seamount, south of Lihir Island, Papua New Guinea. Small-subunit rRNA genes were amplified directly from the sediment DNA by PCR and cloned. The majority of the cloned 16S rRNA gene sequences were most closely related to as-yet-uncultivated microorganisms found in deep-sea sediments, and were primarily affiliated with one of four groups: the $\gamma$-, $\delta$-, and $\epsilon$-subdivisions of Proteobacteria, and Cytophaga-Flavobacterium-Bacteroides. We did not recover any sequences related to cyanobacteria, prochlorophytes, and $\alpha$-Proteobacteria, which are known to occur in great abundance within the surface mixed layer of the Atlantic and Pacific Oceans. The majority of the cloned $\gamma$-and $\epsilon$-Proteobacterial sequences were closely related to chemoautotrophic sulfur-oxidizing symbionts of marine benthic fauna, and the $\delta$-Proteobacterial sequences to sulfate- and sulfur-reducing bacteria, indicating that they might play an important role in chemoautotrophic primary production and the sulfur cycle in the cold-seep area. There results demonstrate the high diversity of the bacterial community in the cold-seep sediment, and substantially expand knowledge of the extent of bacterial diversity in this formidable and unique habitat.

Resveratrol inhibits cell growth via targeting the Bmi-1 pathway in YD-10B human oral squamous cell carcinoma cells

  • Park, Kyoung-Eun;Ok, Chang Youp;Jang, Hye-Ock;Bae, Moon-Kyoung;Bae, Soo-Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.115-125
    • /
    • 2020
  • Resveratrol has been reported to exert anticancer activity via modulation of multiple pathways and genes. In this study, we examined the effect of resveratrol on YD-10B human oral squamous cell carcinoma cells and its molecular mechanisms of action. We found that resveratrol inhibited the proliferation of YD-10B cells in a dose- and time-dependent manner. The suppressive effect of resveratrol was accompanied by a reduction in Bmi-1 gene expression. We observed that silencing the Bmi-1 gene by small interfering RNA effectively downregulated the levels of GLUT1 mRNA and protein, which were also repressed by resveratrol. Bmi-1 silencing increased the number of YD-10B cells in S-phase arrest by approximately 2.3-fold compared with the control. In conclusion, the results of the present study demonstrate, for the first time, that resveratrol suppresses Bmi-1-mediated GLUT1 expression in human oral squamous cell carcinoma cells and suggest that the specific molecular targeting of Bmi-1 and/or GLUT1 expression can be combined with a chemotherapeutic strategy to improve the response of oral cancer cells to resveratrol.

Benzidine Induces Epithelial-Mesenchymal Transition of Human Bladder Cancer Cells through Activation of ERK5 Pathway

  • Sun, Xin;Zhang, Tao;Deng, Qifei;Zhou, Qirui;Sun, Xianchao;Li, Enlai;Yu, Dexin;Zhong, Caiyun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.188-197
    • /
    • 2018
  • Benzidine, a known carcinogen, is closely associated with the development of bladder cancer (BC). Epithelial-mesenchymal transition (EMT) is a critical pathophysiological process in BC progression. The underlying molecular mechanisms of mitogen-activated protein kinase (MAPK) pathway, especially extracellular regulated protein kinases 5 (ERK5), in regulating benzidine-induced EMT remains unclarified. Hence, two human bladder cell lines, T24 and EJ, were utilized in our study. Briefly, cell migration was assessed by wound healing assay, and cell invasion was determined by Transwell assay. Quantitative PCR and western blot were utilized to determine both gene expressions as well as protein levels of EMT and MAPK, respectively. Small interfering RNA (siRNA) was transfected to further determine ERK5 function. As a result, the migration and invasion abilities were enhanced, epithelial marker expression was decreased while mesenchymal marker expression was increased in human BC cell lines. Meanwhile, benzidine administration led to activation of ERK5 and activator protein 1 (AP-1) proteins, without effective stimulation of the Jun N-terminal kinase (JNK) or p38 pathways. Moreover, Benzidine-induced EMT and ERK5 activation were completely suppressed by XMD8-92 and siRNAs specific to ERK5. Of note, ERK1/2 was activated in benzidine-treated T24 cells, while benzidine-induced EMT could not be reversed by U0126, an ERK1/2 inhibitor, as indicated by further study. Collectively, our findings revealed that ERK5-mediated EMT was critically involved in benzidine-correlated BC progression, indicating the therapeutic significance of ERK5 in benzidine-related BC.

Occurrence and Molecular Identification of Giardia duodenalis from Stray Cats in Guangzhou, Southern China

  • Zheng, Guochao;Hu, Wei;Liu, Yuanjia;Luo, Qin;Tan, Liping;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.1
    • /
    • pp.119-124
    • /
    • 2015
  • The objective of this study was to genetically characterize isolates of Giardia duodenalis and to determine if zoonotic potential of G. duodenalis could be found in stray cats from urban and suburban environments in Guangzhou, China. Among 102 fresh fecal samples of stray cats, 30 samples were collected in Baiyun district (urban) and 72 in Conghua district (suburban). G. duodenalis specimens were examined using light microscopy, then the positive specimens were subjected to PCR amplification and subsequent sequencing at 4 loci such as glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), ${\beta}$-giardin (bg), and small subunit ribosomal RNA (18S rRNA) genes. The phylogenetic trees were constructed using obtained sequences by MEGA5.2 software. Results show that 9.8% (10/102) feline fecal samples were found to be positive by microscopy, 10% (3/30) in Baiyun district and 9.7% (7/72) in Conghua district. Among the 10 positive samples, 9 were single infection (8 isolates, assemblage A; 1 isolate, assemblage F) and 1 sample was mixed infection with assemblages A and C. Based on tpi, gdh, and bg genes, all sequences of assemblage A showed complete homology with AI except for 1 isolate (CHC83). These findings not only confirmed the occurrence of G. duodenalis in stray cats, but also showed that zoonotic assemblage A was found for the first time in stray cats living in urban and suburban environments in China.

Combined Genotype Analyses of Precursor miRNA-196a2 and -499a Variants with Hepatic and Renal Cancer Susceptibility- a Preliminary Study

  • Toraih, Eman A;Fawzy, Manal S;Elgazzaz, Mona G;Hussein, Mohammad H;Shehata, Rasha H;Daoud, Hisham G
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3369-3375
    • /
    • 2016
  • MicroRNAs, a novel class of small non-coding RNAs, are key players in many cellular processes, including cell proliferation, differentiation, invasion and regeneration. Tissue and circulatory microRNAs could serve as useful clinical biomarkers and deregulated expression levels have been observed in various cancers. Gene variants may alter microRNA processing and maturation. Thus, we aimed to investigate the association of MIR-196a2 rs11614913 (C/T), MIR-499a rs3746444 (A/G) polymorphisms and their combination with cancer susceptibility in an Egyptian population. Sixty five renal cell carcinoma (RCC) and 60 hepatocellular carcinoma (HCC) patients and 150 controls were enrolled in the study. They were genotyped using real-time polymerase chain reaction technology. Both $miR-196a2^*T$ and $miR-499a*G$ were associated with RCC risk, but only $miR-196a^*T$ was associated with HCC development. Carriage of the homozygote combinations ($MIR196a2^*TT+MIR499a^*AA$) and ($MIR196a2^*CC+MIR499a^*GG$) was associated with 25 and 48 fold elevation of likelhood to develop RCC, respectively. The miR-196a2 SNP was also linked with larger tumor size in RCC and advanced tumor stage in HCC. miR-196a2 and miR-499a combined genotypes were associated with RCC and HCC. Further functional analysis of SNPs is required to confirm relationships between genotypes and phenotypes.

A Novel Strain of Cucumber mosaic virus Isolated from Lilium longiflorum

  • Jung, Hye-Jin;Ueda, Shigenori;Ryu, Ki-Hyun;Lee, Sang-Yong;Choi, Jang-Kyung
    • The Plant Pathology Journal
    • /
    • v.16 no.6
    • /
    • pp.306-311
    • /
    • 2000
  • A new strain of Cucumber mosaic virus (CMV) from easter lily (Lilium longiflorum), Ly2-CMV, was identified and compared to the well-characterized Mf-CMV (subgroupⅠ) and LS-CMV (subgroupⅡ) by host reaction in several indicator plants, dsRNA analysis, serological property, RT-PCR analysis, restriction enzyme profile of the PCR products and nucleotide sequence of coat protein (CP) gene. Remarkable differences in symptoms of Ly2-CMV were found between Mf-CMV or LS-CMV in tobacco plants and Datura stramoinium. Ly2-CMV induced small necrotic ringspots on the inoculated leaves of Nicotiana tabacum cvs. Xanthi nc and Burley 21 and D. stramonium, and failed to infect these species systemically. Of the indicator plants tested, N. benthamiana only reacted with systemic infection by inoculation of Lr2-CMV. In experiments of dsRNA analysis, serology and RT-PCR of CP gene, Ly2-CMV was come within subgroupⅠ CMV. However, restriction enzyme analysis of the PCR products using MspⅠ showed that Ly2-CMV was distinct to Mf-CMV. The CP gene of Ly2-CMV contains 657 nucleotides, and the nucleotide sequence is similar to that of Mf-CMV. There is also a high degree of conservation between their putative gene products in Ly2-CMV and Mf-CMV, with five amino acid changes in the 218 amino acids of the CPs.

  • PDF

Expression Patterns of Cell Cycle Related Genes mRNA and Proteins in the Mouse Ovary (세포주기와 관련된 유전자들의 난소 내 mRNA 및 단백질 발현)

  • Park, Chang-Eun;Hong, Sung-No
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.72-81
    • /
    • 2006
  • Wee1 is a kinase regulator of the M-phase promoting factor (MPF; a complex of cdc2 and cyclin B1). The present study was undertaken to determine the role(s) of wee1 in the early stages of mouse ovarian follicles. The expression of wee1 and the correlated cell-cycle components, namely cdc2, cyclin B1, and cdc25C, were evaluated by immunohistochemistry. In addition, the expression of Tyr15-phosphorylated cdc2 (cdc2-p) was also examined to determine whether wee1 kinase phosphorylates cdc2 existed. Each component except cdc25C was found cytoplasmic in the oocytes at all stages of follicles, while cdc25C was not detected in primordial follicles. It was found primarily in ovarian somatic cells and to a small extent in granulosa cells of the growing follicles. To further confirm the expression of cell-cycle components in the primordial follicular oocytes, day1 ovaries were enzymatically and mechanically dissociated, then oocytes were isolated from somatic including pre-granulosa cells, and we confirmed that cdc2-p was expressed in oocytes of primordial follicles. From the results of the present study, we concluded wee1, without the counteracting cdc25C, would cause meiotic arrest of oocytes by the inhibitory phosphorylation of cdc2. The expression of all these proteins in the granulosa cells of growing follicles may regulate their mitosis concurrently with the growth of oocytes and follicles.

  • PDF

High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella

  • KyeongHye, Won;Dohyun, Kim;Donghyun, Shin;Jin, Hur;Hak-Kyo, Lee;Jaeyoung, Heo;Jae-Don, Oh
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1144-1172
    • /
    • 2022
  • Salmonella enterica serovar Typhimurium isolate HJL777 is a virulent bacterial strain in pigs. The high rate of salmonella infection are at high risk of non-typhoidal salmonella gastroenteritis development. Salmonellosis is most common in young pigs. We investigated changes in gut microbiota and biological function in piglets infected with salmonella via analysis of rectal fecal metagenome and intestinal transcriptome using 16S rRNA and RNA sequencing. We identified a decrease in Bacteroides and increase in harmful bacteria such as Spirochaetes and Proteobacteria by microbial community analysis. We predicted that reduction of Bacteroides by salmonella infection causes proliferation of salmonella and harmful bacteria that can cause an intestinal inflammatory response. Functional profiling of microbial communities in piglets with salmonella infection showed increasing lipid metabolism associated with proliferation of harmful bacteria and inflammatory responses. Transcriptome analysis identified 31 differentially expressed genes. Using gene ontology and Innate Immune Database analysis, we identified that BGN, DCN, ZFPM2 and BPI genes were involved in extracellular and immune mechanisms, specifically salmonella adhesion to host cells and inflammatory responses during infection. We confirmed alterations in gut microbiota and biological function during salmonella infection in piglets. Our findings will help prevent disease and improve productivity in the swine industry.

Amphidinium stirisquamtum sp. nov. (Dinophyceae), a new marine sand-dwelling dinoflagellate with a novel type of body scale

  • Luo, Zhaohe;Wang, Na;Mohamed, Hala F.;Liang, Ye;Pei, Lulu;Huang, Shuhong;Gu, Haifeng
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.241-261
    • /
    • 2021
  • Amphidinium species are amongst the most abundant benthic dinoflagellates in marine intertidal sandy ecosystems. Some of them produce a variety of bioactive compounds that have both harmful effects and pharmaceutical potential. In this study, Amphidinium cells were isolated from intertidal sand collected from the East China Sea. The two strains established were subjected to detailed examination by light, and scanning and transmission electron microscopy. The vegetative cells had a minute, irregular, and triangular-shaped epicone deflected to the left, thus fitting the description of Amphidinium sensu stricto. These strains are distinguished from other Amphidinium species by combination characteristics: (1) longitudinal flagellum inserted in the lower third of the cell; (2) icicle-shaped scales, 276 ± 17 nm in length, on the cell body surface; (3) asymmetrical hypocone with the left side longer than the right; and (4) presence of immotile cells. Therefore, they are described here as Amphidinium stirisquamtum sp. nov. The molecular tree inferred from small subunit rRNA, large subunit rRNA, and internal transcribed spacer-5.8S sequences revealed that A. stirisquamtum is grouped together with the type species of Amphidinium, A. operculatum, in a fully supported clade, but is distantly related to other Amphidinium species bearing body scale. Live A.stirisquamtum cells greatly affected the survival of rotifers and brine shrimp, their primary grazers, making them more susceptible to predation by the higher tropic level consumers in the food web. This will increase the risk of introducing toxicity, and consequently, the bioaccumulation of toxins through marine food webs.