Browse > Article

Cold-Seep Sediment Harbors Phylogenetically Diverse Uncultured Bacteria  

Cho, Jae-Chang (Department of Environmental Sciences, Hankuk University of Foreign Studies, Institute of Environmental Science)
Lee, Sang-Hoon (Department of Environmental Sciences, Hankuk University of Foreign Studies)
Oh, Hae-Ryun (Department of Environmental Sciences, Hankuk University of Foreign Studies)
Lee, Jung-Hyun (Microbiology Laboratory, Korea Ocean Research and Development Institute)
Kim, Sang-Jin (Microbiology Laboratory, Korea Ocean Research and Development Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.5, 2004 , pp. 906-913 More about this Journal
Abstract
A culture-independent molecular phylogenetic survey was carried out on the bacterial community in cold-seep sediment at Edison Seamount, south of Lihir Island, Papua New Guinea. Small-subunit rRNA genes were amplified directly from the sediment DNA by PCR and cloned. The majority of the cloned 16S rRNA gene sequences were most closely related to as-yet-uncultivated microorganisms found in deep-sea sediments, and were primarily affiliated with one of four groups: the $\gamma$-, $\delta$-, and $\epsilon$-subdivisions of Proteobacteria, and Cytophaga-Flavobacterium-Bacteroides. We did not recover any sequences related to cyanobacteria, prochlorophytes, and $\alpha$-Proteobacteria, which are known to occur in great abundance within the surface mixed layer of the Atlantic and Pacific Oceans. The majority of the cloned $\gamma$-and $\epsilon$-Proteobacterial sequences were closely related to chemoautotrophic sulfur-oxidizing symbionts of marine benthic fauna, and the $\delta$-Proteobacterial sequences to sulfate- and sulfur-reducing bacteria, indicating that they might play an important role in chemoautotrophic primary production and the sulfur cycle in the cold-seep area. There results demonstrate the high diversity of the bacterial community in the cold-seep sediment, and substantially expand knowledge of the extent of bacterial diversity in this formidable and unique habitat.
Keywords
Cold-seep; bacteria; diversity;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Naganuma, T., C. Kato, H. Hirayama, N. Moriyama, J.Hashimoto, and K. Horikoshi. 1997. Intracellular occurrence of epsion-Proteobacterial 16S rDNA sequences in the vestimentiferan trophosome. J. Oceanogr. 53: 193- 197.
2 Polz, M. F., D. L. Distel, B. Zarda, R. Amann, H. Felbeck, J. A. Ott, and C. M. Cavanaugh. 1994. Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl. Environ. Microbial. 60: 4461-4467.
3 Rath, J., K Y. Wu, G. J. Hemdl, and E. F. DeLong. 1998. High phylogenetic diversity in a marine-snow-associated bacterial assemblage. Aquat. Microb. Ecol. 14: 261- 269.
4 Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch, and J. B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila: Possible chemoautotrophic symbionts. Science 213: 340- 342.
5 Di Meo, C. A, A. E. Wilbur, W. E. Holben, R. A Feldman, R. C. Vrijenhoek, and S. C. Cary. 2000. Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl. Environ. Microbiol. 66: 651- 658.
6 Eisen, J. A., S. W. Smith, and C. M. Cavanaugh. 1992. Phylogenetic relationships of chemoautotrophic bacterial symbionts of Solemya velum (Mollusca: Bivalvia) determined by 16S rRNA J. Bacteriol. 174: 3416- 3421.
7 Felbeck, H. 1981.Chemoautrophicpotential of the hydrothermal vent tube worm Riftia pachyptila Jones (Vestimentifera). Science 213: 336- 338.
8 Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345: 60- 63.
9 Kulm, L. D., E. Suess, J. C. Moore, B. Carson, B. T. Lewis, S. D. Ritger, D. C. Kadko, T. M. Thornburg, R. W. Embley, W. D. Rugh, G. J. Massoth, M. G. Langseth, G. R. Cochrane, and R. L. Scamman. 1986. Oregon subduction zone: Venting, fauna, and carbonates. Science 231: 561- 566.
10 Li, L., J. Guenzennec, P. Nichols, P.Henry, M. Yanagibauashi, and C. Kato. 1999. Microbial diversity in Nankai Trough sediments at a depth of 3,843 m. J. Oceanogr. 55: 635- 642.
11 Li, L., C. Kato, and K. Horikoshi. 1999. Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv. 8: 659- 677.   DOI
12 Moyer, C. L., F. C. Dobbs, and D. M. Karl. 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61: 1555- 1562.
13 Kim, M.-H., S. T. Shim, Y. S. Kim, and K. H. Kyung. 2002. Diversity of Leuccnostocs on galic surface, and extreme environment. J. Microbiol. Biotechnol. 12: 497-502.
14 DeLong, E. E, D. G. Franks, and A. L. Alldredge. 1993. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterialassemblages.Limnol. Oceanogr. 38: 924- 934.
15 Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366- 376
16 Ohta, S. and L. Laubier. 1987. Deep biological communities in the subduction zone of Japan from bottom photographs taken during 'Nautile' dives in the Kaiko project. Earth Planet Sci. Lett. 83: 329- 342.   DOI
17 Cavanaugh, C. M. 1994. Microbial symbiosis: Patterns of diversity in the marine environment. Am. Zool. 34: 79- 89.
18 Erauso, G., A L. Reysenbach, A Godfroy, J. R. Meunier, B. Crump, F. Partensky, J. A Baross, V. Marteinsson, G. Barbier, N. R. Pace, and D. Prieur. 1993. Pyrococcus abyssi sp. nov., a new hydrothermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol. 160: 338- 349.
19 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., U.S.A.
20 istel, D. L., H. Felbeck, and C. M. Cavanaugh. 1994. Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalve hosts. J. Mol. Evol. 38: 533- 542.
21 Jannasch, H. W. and C. O. Wirsen. 1979. Chemosynthetic primary production of east Pacific sea floor spreading centers. Bioscience 29: 592- 598.
22 Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker, Jr., P. R. Saxman, R. J. Farri, G. M. Garrity, G. J. Olsen, T. M. Schmidt, and J. M. Tiedje. 2001. The Ribosomal Database Project (The RDP-II). Nucleic Acids Res. 29: 173- 174.
23 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673- 4680.
24 Llobet-Brossa, H., R. Rossello-Mora, and R. I. Amann. 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescent in situ hybridization. Appl. Environ. Microbiol. 64: 2691- 2696.
25 Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis Software. Arizona State University, Tempe, AZ, U.S.A.
26 Devereux, R. and G. W. Mundfrom. 1994. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in sandy marine sediment. Appl. Environ. Microbiol. 60: 3437- 3439.
27 Teske, A., K U. Hinrichs, V. Edgcomb, A. V. Gomez, D. Kysela, S. P. Sylva, M. L. Sogin, and H. W. Jannasch. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence for anaerobic methanotrophic communities. Appl. Environ. Microbial. 68: 1994- 2007.
28 Massol-Deya, A. A, D. A Odelson, R. F. Hickey, and J. M. Tiedje. 1995. Bacterial community fingerprinting of amplified 16S and 16S-23S ribosomal RNA gene sequences and restriction endonuclease analysis (ARDRA), pp. 1- 8. In A D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn (eds.), Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands.
29 Tuttle, J. H. 1985. The role of sulfur-oxidizing bacteria at deep-sea hydrothermal vents. Bull. BioI. Soc. Wash. 6: 335-344
30 Fuhrman, J. A., K. McCallum, and A A Davis. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59: 1294- 1302.
31 Reichenbach, H. and M. Dworkin. 1992. The order Cytophagales, pp. 3631- 3687. In A. Balows, H. G. Trtiper, M. Dworkin, W. Harder, and K-H. Schleifer (eds.), The Prokaryotes, Vol. 4. Springer-Verlag, New York, N.Y., U.S.A.
32 Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacterial. 173: 4371- 4378.
33 Bae, J.-W, J.-J. Kim, C. O. Jeon, K. Kim, J. J. Song, S.-G. Lee, H. Poo, C.-M. Jung, Y-H. Park, M.-H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13: 1008- 1011.
34 Li, L., C. Kato, and K. Horikoshi. 1999. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar. Biotechnol. 1: 391-400.
35 Lonsdale, P. 1977. Clustering of suspension feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 24: 857- 863.
36 Reichenbach, H. and M. Dworkin. 1992. The order Cytophagales, pp. 3631- 3687. In A. Balows, H. G. Trtiper, M. Dworkin, W. Harder, and K-H. Schleifer (eds.), The Prokaryotes, Vol. 4. Springer-Verlag, New York, N.Y., U.S.A.
37 Ruby, E. G., H. W. Jannasch, and W. G. Deuser. 1987. Fractionation of stablecarbon isotopes during chemoautotrophic growth of sulfur-oxidizing bacteria. Appl. Environ. Microbial. 53: 1940- 1943.
38 Herzig, P. M., M. D. Hannington, and P. Stoffers. 1998. Petrology, gold mineralization and biological communities at shallow submarine volcanoes of the New Ireland Fore-arc (Papua New Guinea): Preliminary results of R/V Sonne cruise SO-133. InterRidge News 7: 34- 38.
39 Bowman, J. P., J. Cavanaugh, J. J. Austin, and K. Sanderson. 1996.Novel psychrobacterspecies from Antarctic omithogenic soil. Int. J. Syst. Bacteriol. 46: 841- 848.
40 DeAngelis, M. A, M. D. Lilley, E. J. Olson, and J. A Baross. 1993. Methane oxidation in deep-sea hydrothermal plumes of the Endeavour segment of the ludan de Fuca Ridge. Deep-Sea Res. Part I 40: 1169- 1186.
41 Ravenschlag, K., K Sahm, J. Pemtha1er, and R. Amann. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbial. 65: 3982- 3989.
42 Ballard, R. D. 1977. Notes on a major oceanographic find. Oceanus 20: 35- 44.
43 Nelson, D. C. and C. R. Fisher. 1995. Chemoautotrophic and methanotrophic endosymbiotic bacteria at vents and seeps, pp. 125- 167. In D. M. Karl (ed.) Microbiology of Deep-Sea Hydrothermal Vent Habitats. CRC Press, Boca Raton, FL, U.S.A.
44 Cary, S. C., M. T. Cottrell, J. L. Stein, F Camacho, and D. Desbruyeres. 1997. Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl. Environ. Microbiol. 63: 1124- 1130.
45 Nelson, D. C., C. O. Wirsen, and H. W. Jannasch. 1989. Characterization of large autotrophic Beggiatoa abundant at hydrothermal vents of the Guaymas Basin. Appl. Environ. Microbiol. 55: 2909- 2917.
46 Polz, M. F. and C. M. Cavanaugh. 1995. Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc. Natl. Acad. Sci. USA 92: 7232- 7236.
47 Cho, J.-C., D.-H. Lee, Y-C. Cho, J.-c. Cho, and S.-J. Kim. 1996. Direct extraction of DNA from soil for amplification of 16S rRNA gene sequences by polymerase chain reaction. J. Microbial. 34: 229- 235.
48 Durand, P., A L. Reysenbach, D. Prieur, and N. Pace. 1993. Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch. Microbiol. 159: 39- 44.
49 Solangi, M. A., R. M. Overstreet, and A. L. Gannam. 1979. A filamentous bacterium on the brine shrimp and its control. Gulf Res. Rep. 6: 275- 281.
50 Sibuet, M., S. K Juniper, and G. Pautot. 1988. Cold-seep benthic communities in the Japan subduction zones: Geological control of community development. J. Mar. Res. 46: 333- 348.
51 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111- 120.
52 Cavanaugh, C. M. 1985. Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. Bioi. Soc. Wash. 6: 373- 388.
53 Jannasch, H. W.and C.D. Taylor. 1984. Deep-sea microbiology. Annu. Rev. Microbiol. 38: 487 - 514.
54 Ludwig, W., R. Rossello-Mora, R. Aznar, S. Klugbauer, S. Spring, K. Reetz, C. Beimfohr, E. Brockmann, G. Kirchhof, S. Dorn, M. Bachleitner, N. Klugbauer, N. Springer, D. Lane, R. Nietupsky, M. Weizenegger, and K. H. Schleifer. 1995. Comparative sequence analysis of 23S rRNA from Proteobacteria. Syst. Appl. Microbiol. 18: 164- 188.
55 O'Neill, K. R., S. M. Hinton, M. R. Sowlay, and R. R. Colwell. 1999. Uncultured hydrocarbon seep bacterium BPC023 and BPC036. GenBank accession no. AF154087 and AF154089.
56 Childress, J. J., R. W. Lee, N. K. Sanders, H. Felbeck, D. R. Oros, A. Toulmond, D. Desbruyeres, M. C. Kennicutt II, and J. Brooks. 1993. Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental $pCO_2$. Nature 362: 147- 149.
57 Godfroy, A, F. Lesongeur, G. Raguenes, J. Querellou, E. Antoine, J. R. Meunier, J. Guezennec, and G. Barbier. 1997. Thermococcus hydrothermalis sp. nov, a new hydrothermophilic archeon isolated from a deep-sea hydrothermal vent. lnt. J. Syst. Bacterial. 47: 622- 626.