• Title/Summary/Keyword: slope valve

Search Result 26, Processing Time 0.029 seconds

3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control (원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어)

  • Kang, Dong Hee;Kim, Na Kyong;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

Comparison of Loss Coefficient using 1-inch Ball and Glove Valve Opening Ratio (1인치 볼 밸브 및 글로브 밸브에 대한 개도율에 따른 손실계수(k) 비교에 관한 연구)

  • Kang, Chang-Won;Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.63-69
    • /
    • 2021
  • This study aims to determine the flow characteristics of a one-inch small ball valve and glove valve used in industrial plants. The flow was changed through an experimental equipment, and the internal flow characteristics of the valves were compared. Considering the pressure drop, the decrease in the slope of the ball valve based on the degree of the valve opening was relatively greater than that of the glove valve; further, the slope of the glove valve was gentle while the pressure drop was high. The flow velocity of the ball valve remains consistent after the valve was opened by 70%, whereas the flow velocity of the glove valve constantly increased. The valve loss factor of the ball valve was relatively low compared with that of the glove valve. When the valve was opened by 20%, which is the beginning stage of the valve opening, the valve loss factor of the ball valve was high and gradually became low. This is a structural problem of the ball valve, and the loss factor is significant because the flow path installed at the ball valve has a considerably small area. However, the overall loss factor of glove valve is high because it has a complicated structure of flow path.

A Study on Refrigeration Performance of Vehicle HVAC System for Sub-Cooling Improvement (서브쿨링향상을 위한 차량공조 시스템의 냉방성능에 관한 연구)

  • 박만재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The general method which changes sub-cooling of refrigerant is to control the expansion valve in the state of mixing with liquid and gas phase. In this study, the performance of vehicle air conditioning system is to control either changing the expansion valve or adding the sub condenser. Therefore, this research finally is tested in case of the fourth test procedure, the second test was suitable for a valve opening area due to adjusting valve slope in comparison with the other test. The other test except for the second test happened to do liquid back due to the excessively liquified refrigerant into the system. In conclusion, the second test was appeared not to be influenced upon liquid back, and it is to expect positive performance by controlling an expansion valve. Therefore, it will be also useful to research for an increase of compressor efficiency Performance improvement of an air conditioner is to reinforce the suction performance of the evaporator and increase the sub-cooling, which make use of the sub-cooling system.

A Study on the Design of Flow Control Valve Attached to Vane Pump for Power Steering (파워 스티어링용 베인 펌프 유량 제어부 설계에 관한 연구)

  • 이윤태
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.87-95
    • /
    • 2000
  • The numerical analysis and the experiments are carried out to develop the design program for the flow control valve attached to the vane pump for power steering. The factors affecting the flow rate characteristics are analyzed by the experiments and the numerical analysis. The results are summarized as follows; (1) the main factors affecting to the first and second control flow rate are the diameter of big and small rod of the spool. (2) the cut off is mainly affected by the main spring constant, the initial displacement of main spring and the small diameter of the spool. (3) the dropping slope characteristics are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF

Study on the Characteristics of Control by High Frequency ECU for Braking System (제동 시스템을 위한 고주파수 ECU의 제어 특성 연구)

  • Yeon, Kyu-Bong;Chong, Jong-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2428-2434
    • /
    • 2012
  • This paper describes the control of a solenoid valve of ESC(Electronic Stability Control) with hydraulic modulator in braking system. ESC ECU(Electronic Control Unit) to control the high-frequency control and slope control method was applied, the surge pressure and EMI(electromagnetic interference) reduction characteristics were studied. The stage of ECU output was added the slope shaping function to reduce electromagnetic emission at higher frequencies. Measurements show that this high frequency ECU manages to reduce the surge pressure and electromagnetic emission by the control of solenoid valve. In conclusion, by using the results of this study for the high frequency ECU control, we could expect enhancement of braking system performance.

Structural Analysis of the Valve Block of a Swash Plate-Type Axial Piston Pump (사판식 축 피스톤 펌프 밸브블록의 구조 해석에 관한 연구)

  • Kim, Jeong-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.52-57
    • /
    • 2016
  • A swash plate-type piston pump is a device used to discharge hydraulic fluid as the volume generated through the piston moves in the direction of the slope by adjusting the angle of its swash plate. In addition, the valve block internalized in the pump includes a flow path for intake from outside, a flow path for discharge, and a pilot conduit line to control discharge pressure and flux. In this study, a numerical analysis is conducted to improve the cracking of the valve block generated during process testing, and the developed pump is evaluated.

Analysis on the Relationships Between the Valve Plate Geometry and the Housing Vibration of a Bent-Axis Type Hydraulic Piston Pump (사축식 유압 피스톤 펌프의 밸브 플레이트 형상과 하우징 진동간 상관관계에 대한 해석)

  • Kim Sung-Hun;Hong Yeh-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.52-59
    • /
    • 2006
  • The vibration of hydraulic piston pumps is induced by the periodically changing cylinder chamber pressure whose waveform is significantly influenced by valve plate geometry. In this study, the force input to the housing of a bent-axis type hydraulic piston pump was computed by deriving the dynamic equations of its piston and cylinder barrel. The vibration intensity of the pump was represented by the acceleration amplitude of its housing. In order to comparatively evaluate the influence of valve plate geometry on the vibration of pump housing, two different types of valve plate were tested. The computed results showed good agreement with the experimental data, indicating that the vibration acceleration of pump housing is rather dependent on the variation amplitude of balance coefficient than the changing slope or overshoot of cylinder chamber pressure. It was also confirmed that the design effect of valve plates could be directly examined out by monitoring the vibration acceleration of pump housing.

Numerical Simulation of The Pressure-Flow Control Characteristics of Shunt Valves Used to Treat Patients with Hydrocephalus (수두층 치료용 션트밸브의 압력-유량 제어특성 수치해석)

  • 장종윤;이종선;서창민
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.403-412
    • /
    • 2001
  • The Present study analyzed the pressure-flow characteristics of a Korean shunt valve. Changes in the characteristic currie depending on the design parameters were also investigated. The Korean shunt valve used in the present study was constant pressure type and our analyses were validated through experiments. We applied fluid-structure interaction to solve the flow dynamic Problem because the small diaphragm in the valve was made from flexible silicone elastomers. Considering the material nonlinearity of the hyper-elastic material. the Mooney-Rivlin approximation was employed. The results of the numerical analyses were close to the experimental results The major Pressure drop was observed to happen in the small diaphragm. The slope of the pressure-flow characteristic curve was computed to be 0.37mm$H_2O$.hr/cc, which was similar to the average value of commercial shunt valves. 0.40mm$H_2O$.hr/cc. Therefore. our valves analyzed in the Present study showed a Proper Pressure control characteristics of the constant pressure type shunt valves. The opening pressure could be controlled by adjusting the amount of predeflection of the valve diaphragm. In order to obtain opening pressures of 25mm$H_2O$ and 80mm$H_2O$, respectively, and the required predeflection was found to be 10.2$\mu$m and 35.3$\mu$m. The flow orifice size was found to be within 10$\mu$m during valve operation Therefore, Precision design and manufacturing techniques are necessary for successful operations of the shunt valve. The study indicated the amount of predeflection as well as the magnitude of corner rounding of the diaphragm edge are important design parameters to influence the slope of the pressure-flow characteristic curve.

  • PDF

Congenital mitral valve stenosis in a Chinchilla cat

  • Lu, Ta-Li;Hung, Yong-Wei;Choi, Ran;Hyun, Changbaig
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.3
    • /
    • pp.197-200
    • /
    • 2016
  • A one-year-old, 3.25 kg intact male Chinchilla cat presented with acute right hind limb paralysis. Diagnostic imaging studies found cardiomegaly with interstitial lung pattern, abnormal mitral valve leaflets without maximum opening at the end of the ventricular diastole and during atrial systole and severe mitral inflow obstruction. Based on these findings and its young age, the case was diagnosed as congenital mitral valve stenosis. Treatment was directed to stabilize clinical conditions related to heart failure, to prevent further formation of thrombus and to relieve pain associated with thromboembolism. After one month of therapy, hind limb motor function was fully recovered.

Pressure Variation Characteristics at Trapping Region in Oil Hydraulic Piston Pumps (유압 피스톤 펌프의 폐입 구간에서의 압력 변동 특성)

  • Kwag Jae-ryon;Oh Seok-Hyung;Jung Jae-Youn
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.329-334
    • /
    • 2003
  • Design of pre-compression region(trapping region) of the valve plate is an important element to minimize the pressure fluctuation in a cylinder and in discharge process, and pump noise. In this study, we tried to prove what the characteristics of the oil hydraulic pump would be according to the angle of the trapping region. Three kinds of asymmetrical valve plates were used. As a result, we found that by designing the trapping region, the slope of the pressure rise in the cylinder port from low-pressure suction region to high-pressure discharge region is relaxed and the pressure fluctuation width and the discharge pressure pulsation are reduced. Therefore, because the pump gets smooth pressure fluctuation and low fluid Impact, the pump noise is reduce.

  • PDF