• Title/Summary/Keyword: slope of grain

Search Result 116, Processing Time 0.02 seconds

Sensitive Characteristics of Hot Carriers by Bias Stress in Hydrogenated n-chnnel Poly-silicon TFT (수소 처리시킨 N-채널 다결정 실리콘 TFT에서 스트레스인가에 의한 핫캐리어의 감지 특성)

  • Lee, Jong-Kuk;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.218-224
    • /
    • 2003
  • The devices of n-channel poly silicon thin film transistors(TFTs) hydrogenated by plasma, $H_2$ and $H_2$/plasma processes are fabricated. The carriers sensitivity characteristics are analyzed with voltage bias stress at the gate oxide. The parametric sensitivity characteristics caused by electrical stress conditions in hydrogenated devices are investigated by measuring the drain current, threshold voltage($V_{th}$), subthreshold slope(S) and maximum transconductance($G_m$) values. As a analyzed results, the degradation characteristics in hydrogenated n-channel polysilicon thin film transistors are mainly caused by the enhancement of dangling bonds at the poly-Si/$SiO_2$ interface and the poly-Si grain boundary due to dissolution of Si-H bonds. The generation of traps in gate oxide are mainly dued to hot electrons injection into the gate oxide from the channel region.

Comparison of the physical characteristics according to the varieties of perilla for the development of a high-quality, high-efficiency cleaner and stone separator

  • Park, Jong Ryul;Park, Heo Man;Park, Hye Rin;Yang, Gye Hoon;Lee, Jung Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.717-726
    • /
    • 2020
  • The physical characteristics of the major varieties of perilla were analyzed to use as basic data for the design of a high-quality, high-efficiency perilla cleaner and stone separator. Because the size, thousand-grain weight, angle of repose, angle of friction, bulk density and terminal velocity of perilla have significant differences according to the perilla variety, the different of characteristics by variety should be considered for performance improvement of a perilla cleaner and stone separator. Therefore the cleaner and stone separator using a sieve could be improved by the application of a detachable sieve or by using equipment such as a 2 - 3 stage sieve and regulating the slope. Moreover, because differences in the terminal velocity occur due to the differences in the size and thousand-grain weight according to the perilla variety, a blower with an adjustable fan speed was considered for the design of the improved cleaner. Additionally, it was shown that the length of perilla has the greatest correlation based on a comparison of the coefficients of the other characteristics. Accordingly, the length of perilla could be used as a major factor for the fine adjustment and parts replacement of the device. These results can be used as basic data for a high-quality, high-efficiency perilla cleaner and stone separator. In the future, the development of the machine and follow-up studies based on the basic data are needed to determine the optimized operating conditions and mechanism of action.

A Study on the Characteristics of River Sediments and the Rebound Strength of Rock and Sediment in Dong River (동강의 하천 퇴적물의 입자 특성 및 암석의 반발 강도 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2019
  • The grain size characteristics of river sediments and the characteristics of bedrock were investigated for the 24km section of the Dong River upstream of the Han River. The bedrock of the study area is various limestone belonging to the Paleozoic Choseon limestone group, and Mesozoic sandstone and conglomerate occur in some areas. Most of the river channel is made of limestone, and most of the river bottom is covered with fluvial sediments. More than 70% of these sediments are sandstone and conglomerate, rather than limestone which forms the basis of the valley. Sediment particles seem to have been supplied upstream of the study area rather supplied from the slope near of the channel. It is difficult to find the statistically significant difference in the shape of the sediment particles of limestones and non-limestones. However, limestones has platy forms rather than block forms, it can be assumed that the limestone was supplied from the surrounding valley wall and transported over a short distance. The particle sizes of DG1~DG2(the upstream section) are decreasing in the downstream direction. However, at DG3, which is a tributary, Jijangcheon, confluence particle size increases and at DG4 particle size increases more. In the case of DG4, it may be influenced by the influx of tributaries, but it also can be supposed as the impact of the large flood in 2002. In the downstream parts(DG5~DG7), the particle size decreases exponentially with distance. The rebound strength of stream sediments and bedrock was measured by using Schmidt hammer. Limestone showed lower rebound strength than non-limestone. According to the results of the sediment and bedrock, it can be seen that the sandstone and conglomerate with high rebound values pass through valley with the relatively low strength limestone. The sediments of limestone were decreased in grain size more rapidly than those of limestone sediments.

Hydrogneation and Electrochemical Characteristics of Gas-atomized Zr-based $AB_2$ Hydride for Ni-MH Secondary Battery (기체분무형 공정으로 제조된 Zr계 금속수소화물의 수소화반응 및 Ni-MH 2차전지 전극 특성에 관한 연구)

  • Kim, Jin-Ho;Hwang, Kwang-Taek;Kim, Byung-Kwan;Han, Jeong-Seb
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.505-511
    • /
    • 2009
  • The hydriding and electrochemical characteristics of Zr-based $AB_2$ alloy produced by gas atomization have been extensively examined. For the particle morphology of the as-cast and gas-atomized powders, it can be seen that the mechanically crushed powders are irregular, while the atomized powder particles are spherical. The increase of jet pressure of gas atomization process results in the decrease of hydrogen storage capacity and the slope of plateau pressure significantly increases. TEM and EDS studies showed the increase of jet pressure in the atomization process accelerated the phase separation within grain of the gas-atomized alloy, which brought about a poor hydrogenation property. However, the gas-atomized $AB_2$ alloy powders produced by jet pressure of 50 bar kept up the reversible $H_2$ storage capacity and discharge capacity similar to the mechanically crushed particles. In addition, the electrode of gas-atomized Zr-based $AB_2$ alloy of 50 bar showed improved cyclic stability over that of the cast and crushed particulate, which is attributed to the restriction of crack propagation by grain boundary and dislocation with ch/discharging cycling.

Effect of internal stability on the failure properties of gravel-sand mixtures

  • Zhongsen Li;Hanene Souli;Jean-Marie Fleureau;Jean-Jacques Fry;Tariq Ouahbi;Said Taibi
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.395-403
    • /
    • 2023
  • The paper investigates the effect of two parameters - sand content (SC) and grain migration during shearing - on the mechanical properties of gravel-sand mixtures. Consolidated undrained (CU) triaxial tests were carried out on eight series of mixtures containing gravel (1<d<16 mm) and sand (0.1<d<1 mm). The prepared mixtures have sand contents of 0, 10, 15, 20, 40, 54, 94 and 100%, and a relative density of 60%. The transition sand content (TSC) is experimentally defined and marks the transition from gravel-driven to sand-driven behavior. For SC<TSC, the dry density of the mixture increases with SC. This induces an increase in undrained peak strength and dilative trend. The slope and position of the critical state line (CSL) are also deeply dependent on SC. At SC=TSC, the mixtures exhibit the largest dry density and yield the highest undrained peak strength and the largest dilative trend. During shearing, large internal migration of grains was observed at the TSC, causing heterogeneity in the sample. Analysis of the CSL deduced from the final points of the triaxial tests shows that, at the TSC, failure appears to correspond to the behavior of the coarsest fraction of the soil. This fraction is located in the upper part of the sample, where the sand particles had been eliminated by suffusion. On the other hand, in the more stable materials, the CSL is consistent with the bulk grain size distribution of the soil.

Study on the Improvement of Land Clearing Methods by Bulldozer & Fertilization of Cleared Soil (불도우저에 의한 개간 공법의 개선과 숙지화에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3627-3641
    • /
    • 1975
  • The Government is trying to increase total food grain yield to meet national self sufficiency by means of increasing unit yield as well as extending crop land, and this year he set the target of 321,000 hectare of forest to clear for cropping. This study was carried to investigate the most efficient method of clearing hillock by bulldozer, and successful method to develope yielding potential of newly cleared land in short term. Since the conventional land clearing method is just earth leveling and root removing neglecting top soil treatment, the growth of crop was poor and farmer tends not to care the land. The top-soil-furrowing method is applied through out this study, that is advantageous especially for the land having shallow top soil and low fertility like Korean forest. In this study, various operating method were tried to find out most efficient method separately in connection with the land slope less than 25 percent and over, and several fertilizing methods to develop yielding potential. The results are as follows; 1) For the natural land slope utilization method, applicable to the land having less than 25 percent slope, reverse operating was more efficient than using forward gear of bulldozer. The operating time was 3 hour 32 minutes and 36 seconds using forward gear was 2 hour 32 minutes and 30 seconds for reverse gear operation per 1,000 square meter. 2) Bulldozer having angle blade adjustment needed 7hr 15min. for constructing of terrace per 10a compaire with the one having angle & tilt adjustment needed 6hr 4min for same operations. Specially there is significant difference for operation time of first period (earth cutting) such as bulldozer having angle blade adjustment needed 3hr 56min compaired with the one having angle & tilt adjustment 3hr 59min. In construction of terrace, the bull-dozer having tilting and angle blade adjustment was most suitable and performed efficiently. 3) For the fertilizer application treatment, the grass (Ladino clover) yield in first year was almost same as ordinary field's in the plot applied(N.P.K+lime+manure) while none fertilizer plot showed one tenth of it, and (N.P.K.+lime) applied plot yielded on third. 4) The effect of different land clearing method to yield showed significant difference between each treatment especially in the first year, and the conventional method was the lowest. In the second year, still conventional terracing plot yielded only half of ordinary field while the other plots showed as same as ordinary field's. 5) The downward top soil treatment plot showed most rapid improvement in soil structure during one year physio chemically, it showed increase in pH rate and organic composition, and the soil changed gradually from loam to sand-loam and the moisture content increased against the pF rate, and it gives good condition to grow hay due to the increase of field water capacity with higher available water content. 6) Since the soil of tested area was granite, the rate of soil errosion was increased about 2 to 5 percent influencing in soil structure more sand reducing clay content, and an optimum contour farming method should be prepared as a counter measure of errosion.

  • PDF

Development of Depositional Landforms in Upstream Reach of Ulsan Sayeon Dam Lake (울산 사연호 상류의 퇴적지형 발달)

  • Chang, Mun-Gi
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.4
    • /
    • pp.409-421
    • /
    • 2007
  • The purpose of this paper is to consider the formation processes and depositional conditions of bars formed at the upper-stream part of Sayeon Dam since Sayeon Dam construction in 1964. Results of analyzing the shape characteristics of bars and their sediment grain size distribution are as follow: Firstly, bars are able to categorized as subaqueous bars (A, B), mid-channel bars(C, D), and tributary side-bars(E). Secondly, the outline of bars has longish along the flow path, and their height lowers more and more going towards downstream. Also the height of bar surface tend to heighten from flow path to mountain slope. However, the near part of A is comparatively higher than its distant part, A is defined as a subaqueous natural levee and back swamp. Thirdly, the average particle size of A and B become smaller toward mountain slope. In transportation style, ratio of suspended load become higher toward mountain slope. Fourthly, sorting is worse to very worse according with lake's random changable water level. Fifthly, bar A and B were formed by vertical sedimentation of sediments according as sediments transported along flow path in the subaqueous conditions were spreaded out of flow path. C and D were formed by bed load as flood level lowered. And E was formed by vertical sedimentation while stream flow stopped in tributary's mouth areas with the water level heightening.

  • PDF

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Evaluation for Rock Cleavage Using Distributional Characteristics of Microcracks and Brazilian Tensile Strengths (미세균열과 압열인장강도의 분포 특성을 이용한 결의 평가)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.99-114
    • /
    • 2020
  • The characteristics of the Brazilian tensile strengths(σt) parallel to the rock cleavages in Jurassic granite from Geochang were analysed. The evaluation for the six directions of rock cleavages was performed using the parameter values on microcrack length and the above strength. The strength values of the five test specimens belonging to each direction were classified into five groups. The strength values of these five groups increase in order of group A < B < C < D < E. The close dependence between the above microcrack and strength was derived. The analysis results of this study are summarized as follows. First, the chart showing the variation and characteristics of strength among the three rock cleavages were made. In the above chart, the strength values of six directions belonging to each group were arranged in order of rift(R1 and R2), grain(G1 and G2) and hardway(H1 and H2). The strength distribution lines of the five groups concentrate in the direction of R1. And the widths among the above five lines indicating strength difference(Δσt) are the most narrowest in R1 direction. From the related chart, the variation characteristics among the two directions forming each rock cleavage were derived. G2(2)-test specimen shows higher value and lower value of the difference in strength compared to the case of G1(1)-test specimen. These kinds of phenomena are the same as the case between the test specimen H2(2) and H1(1). The strength characteristics of the above test specimens (2) suggest lower microcrack density value and higher degree of uniformity in the distribution of microcracks arrayed parallel to the loading direction compared to those of test specimens (1). The six strength values belonging to each group were arranged in increasing order in the above chart. The strength values of the test specimens belonging to both group D and E appear in order of R1 < R2 < G1 < H1 < G2 < H2. Therefore, the strength values of group D and E can be indicator values for evaluating the six directions of rock cleavages. Second, the correlation chart between slope angle(θ) and strength difference(Δσt) were made. The values of the above two parameters were obtained from the five strength distribution lines connecting between the two directions. From the chart related to rift plane(G1-H1, R'), grain plane(R1-H2, G') and hardway plane(R2-G2, H'), the slope values of linear functions increase in order of R'(0.391) < G'(0.470) < H'(0.485). Among three planes, the charts related to hardway plane show the highest distribution density among the five groups. From the related chart for rift(R1-R2, R), grain(G1-G2, G) and hardway(H1-H2, H), the slope values of linear functions increase in order of rift(0.407) < hardway(0.453) < grain(0.460). Among three rock cleavages, the charts related to rift show the highest frequency of groups belonging to the lower region. Taken together, the width of distribution of the slope angle among the three planes and three rock cleavages increase in order of H' < G < R' < R < G' < H. Third, the correlation analysis among the parameters related to microcrack length and the tensile strengths was performed. These parameters may include frequency(N), total length(Lt), mean length(Lm), median length(Lmed) and density(ρ). The correlation charts among individual parameters on the above microcrack(X) and corresponding five levels of tensile strengths for the five groups(Y) were made. From the five kinds of correlation charts, the values of correlation coefficients(R2) increase along with the five levels of strengths. The mean values of the five correlation coefficients from each chart increase in order of 0.22(N) < 0.34(Lt) < 0.38(ρ) < 0.57(Lmed) < 0.58(Lm). Fourth, the correlation chart among the corresponding maximum strength for group E(X) and the above five parameters(Y) were made. From the related chart, the values of correlation coefficient increase in order of 0.61(N) < 0.81(Lt) < 0.87(ρ) < 0.93(Lm) < 0.96(Lmed). The two parameters that have the highest correlations are median length with maximum strength. Through the above correlation analysis between microcrack and strength, the credibility for the results from this study can be enhanced.

Ecological Studies on the Distribution, Structure and Maintenance Mechanism of Berchemia berchemiaefolia Forest (망개나무林의 分布, 構造 및 維持機作)

  • Kang, Sang-Joon;Hong-Eun Kim;Chang-Seok Lee
    • The Korean Journal of Ecology
    • /
    • v.14 no.1
    • /
    • pp.25-38
    • /
    • 1991
  • Berchemia berchemiaefolia is a native a native rare plant which has been designating as the Natural Monument, No. 266, since 1980. The floristic composition, population structure and maintenance mechanism of the Berchemia berchemiaefolia forest were investigated in conjunction with the habitat consisted of the block field or screes. Through the present study, the authors found a new habitat of Berchemia berchemiaefolia in the northeastern slope on Mt. Kumdansan located at Hajeok-ri, Cheongcheon-myeon, Koesan-gun, chungbuk province. Gravels consisted of the block field belonged to granule, pebble and cobble as the range of grain size, $\Phi$=-1.5~6.6 values. The tree layer of Berchemia berchemiaefolia community was mainly composed of Quercus variabilis, Pinus densiflora and Q. serrata including Berchemia berchemiaefolia and of this community were similar to that of Q. variabilis. By the age distribution, it was considered that the community was a discontinued one as the pattern of distribution was a normal distribution type(N type). Phenological cycle including leafing, blooming and seed-bearing period between both sites of block field and valley or close canopy showed some differences. The seed production of Berchemia berchemiaefolia was 8, 655, 000 seeds/ha/year, but only 406, 000 seeds/ha/year of them were developed as saplings, and only 4 saplings were developed to mature trees.

  • PDF