• Title/Summary/Keyword: slope management

Search Result 795, Processing Time 0.03 seconds

A Study for Detecting Fuel-cut Driving of Vehicle Using GPS (GPS를 이용한 차량 연료차단 관성주행의 감지에 관한 연구)

  • Ko, Kwang-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.207-213
    • /
    • 2019
  • The fuel-cut coast-down driving mode is activated when the acceleration pedal is released with transmission gear engaged, and it's a default function for electronic-controlled engine of vehicles. The fuel economy becomes better because fuel injection stops during fuel-cut driving mode. A fuel-cut detection method is suggested in the study and it's based on the speed, acceleration and road gradient data from GPS sensor. It detects fuel-cut driving mode by comparing calculated acceleration and realtime acceleration value. The one is estimated with driving resistance in the condition of fuel-cut driving and the other is from GPS sensor. The detection accuracy is about 80% when the method is verified with road driving data. The result is estimated with 9,600 data set of vehicle speed, acceleration, fuel consumption and road gradient from test driving on the road of 12km during 16 minutes, and the road slope is rather high. It's easy to detect fuel-cut without injector signal obtained by connecting wire. The detection error is from the fact that the variation range of speed, acceleration and road gradient data, used for road resistance force, is larger than the value of fuel consumption data.

Development of water circulation status estimation model by using multiple linear regression analysis of urban characteristic factors (도시특성 요인의 다중선형회귀 분석을 이용한 물순환상태추정모델 개발)

  • Kim, Youngran;Hwang, Seonghwan;Lee, Yunsun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.

Analysis on Trail Deterioration in Wolseong, Gyeongju-si - Focused on Assessing Impact Rating Class - (경주 월성의 산책로 훼손실태 분석 - 환경피해도 평가를 중심으로 -)

  • Kang, Tai-Ho;You, Ju-Han;Zhao, Hong-Xia;Li, Hong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.33-39
    • /
    • 2011
  • The purpose of this study is to present the raw data for establishing the conservation and restoration trail about Wolseong by objective and systematical trail deterioration in Wolseong as UNESCO, world heritage site, Gyeongju-si, Korea. To accomplish the purpose, not only trail condition such as altitude, entire width, bare width, maximum depth and slope of trail, but also deterioration types of trail were surveyed at the total 97 points for 2.145km in length on the 11 access trails to Wolseong. Major deterioration types of trail were root exposure(48%), rock exposure(40%), trail deeping(9%) in order of frequency. To grasp the deterioration condition of the trail, assessment on impact rating class of trail that the 11 access trail were investigated. Putting these results together informs us that the deterioration condition of the trail in Wolseong is reached the level of grave concern yet, prompt countermeasure to maintain the existing condition has to be considered with regard for the conditions of location and the containing amounts of use.

Current status of fish fauna and Zacco platypus population in the Cheonggyecheon stream (청계천의 어류상 및 피라미(Zacco platypus) 개체군 현황)

  • Wang, Ju Hyoun;Choi, Won Sub;Choi, Jun Kil;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.68-80
    • /
    • 2021
  • This study aimed to present the current status of exotic fish species, invasive species, and dominant species inhabiting the Cheonggyecheon stream. We conducted three samplings from April to October 2019. A total of 2,045 individuals from 27 species belonging to nine fish families were collected. There were five Korean endemic species (18.5%) including Coreoleuciscus splendidus, Sarcocheilichthys nigripinnis morii, Squalidus gracilis majimae, Zacco koreanus, and Odontobutis interrupta in the Cheonggyecheon stream. The dominant species was Zacco platypus (62.4%) and the subdominant species was Z. koreanus (9.8%). The length-weight analysis of the dominant species Z. platypus population showed a regression coefficient b of 3.3434 and a condition factor(k) of 0.0026, with a positive slope. The growth state of the Z. platypus population was identified as being in a very favorable condition. The Cheonggyecheon stream is considered to be an appropriate habitat for the Z. platypus population. Since the restoration, The Cheonggyecheon stream has had continuous problems due to the introduction of exotic species and invasive species and in this study, exotic species, Gyrinocheilus aymonier var.(gold type), and invasive species, Coreoleuciscus splendidus, which have not previously been reported in the Cheonggyecheon stream, appeared. Therefore, it is deemed necessary to prepare continuous publicity and management measures to prevent exotic species and invasive species from inhabiting the Cheonggyecheon stream.

Status of Groundwater Potential Mapping Research Using GIS and Machine Learning (GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황)

  • Lee, Saro;Fetemeh, Rezaie
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1277-1290
    • /
    • 2020
  • Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.

Roughness Analysis of Paved Road using Drone LiDAR and Images (드론 라이다와 영상에 의한 포장 노면의 평탄성 분석)

  • Jung, Kap Yong;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • The roughness of the road is an important factor directly connected to the ride comfort, and is an evaluation item for functional evaluation and pavement quality management of the road. In this study, data on the road surface were acquired using the latest 3D geospatial information construction technology of ground LiDAR, drone photogrammetry, and drone LiDAR, and the accuracy and roughness of each method were analyzed. As a result of the accuracy evaluation, the average accuracy of terrestrial LiDAR were 0.039m, 0.042m, 0.039m RMSE in X, Y, Z direction, and drone photogrammetry and drone LiDAR represent 0.072~0.076m, 0.060~0.068m RMSE, respectively. In addition, for the roughness analysis, the longitudinal and lateral slopes of the target section were extracted from the 3D geospatial information constructed by each method, and the design values were compared. As a result of roughness analysis, the ground LiDAR showed the same slope as the design value, and the drone photogrammetry and drone LiDAR showed a slight difference from the design value. Research is needed to improve the accuracy of drone photogrammetry and drone LiDAR in measurement fields such as road roughness analysis. If the usability through improved accuracy can be presented in the future, the time required for acquisition can be greatly reduced by utilizing drone photogrammetry and drone LiDAR, so it will be possible to improve related work efficiency.

A study on estimation of lowflow indices in ungauged basin using multiple regression (다중회귀분석을 이용한 미계측 유역의 갈수지수 산정에 관한 연구)

  • Lim, Ga Kyun;Jeung, Se Jin;Kim, Byung Sik;Chae, Soo Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1193-1201
    • /
    • 2020
  • This study aims to develop a regression model that estimates a low-flow index that can be applied to ungauged basins. A total of 30 midsized basins in South Korea use long-term runoff data provided by the National Integrated Water Management System (NIWMS) to calculate average low-flow, average minimum streamflow, and low-flow index duration and frequency. This information is used in the correlation analysis with 18 basin factors and 3 climate change factors to identify the basin area, average basin altitude, average basin slope, water system density, runoff curve number, annual evapotranspiration, and annual precipitation in the low-flow index regression model. This study evaluates the model's accuracy by using the root-mean-square error (RMSE) and the mean absolute error (MAE) for 10 ungauged, verified basins and compares them with the previous model's low-flow calculations to determine the effectiveness of the newly developed model. Comparative analysis indicates that the new regression model produces average low-flow, attributed to the consideration of varied basin and hydrologic factors during the new model's development.

A Study on Flood Susceptibility of Heritage Sites by Heritage Type Depending on Locational Characteristics (입지특성에 따른 문화재 유형별 홍수 민감성 기초연구)

  • Kim, Ji-Soo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.46-56
    • /
    • 2022
  • This study aimed to analyze the locational characteristics of heritage sites in Seoul in order to identify flood susceptibility by type. As for the location factors related to flood susceptibility, elevation, slope, distance to streams, and topographic location were analyzed. Literature review was supplemented for the historical and humanistic environments of heritage sites. The results of the study are as follows. First, heritage sites in Seoul are distributed throughout the city, and are especially highly dense in the Hanyangdoseong fortress. It was also confirmed that heritage sites were concentrated around Jung-gu, Jongno-gu, Jingwan-dong, and Ui-dong in the quantitative spatial analyses. Second, types of heritage sites at the circumstance susceptible to flood damage were related to commerce and distribution, traffic, modern traffic and communication, geological monument, residence, government office, and palace. Third, heritage types with locational characteristics that showed low flood susceptibility were found to be natural scenic spots, telecommunication, ceramics, Buddhism, tombs, and tomb sculptural heritage assets. In a time when risk factors that can damage the value of heritage are gradually increasing due to anthropogenic influences along with changes in the natural environment, this study provides basic data for vulnerability analysis that reflects the unique characteristics of heritage assets. The results can contribute to more comprehensive and comprehensive insights for the management and protection of heritage by including the humanities and social science data together with natural factors in the analysis.

A Study on the Development of "Bufo gargarizans" Habitat Suitability Index(HSI) (두꺼비 서식지 적합성 지수(HSI) 모델개발을 위한 연구)

  • Cho, Gun-Young;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.23-38
    • /
    • 2022
  • This study investigates the characteristics and physical habitat requirements for each Bufo gargarizans life history through a literature survey. After deriving variables for each component of Bufo gargarizans, in order to reduce regional deviations from eight previously studied literature research areas for deriving the criteria for variables, a total of 12 natural habitats of Bufo gargarizanss are selected as spatial ranges by selecting four additional sites such as Umyeonsan Ecological Park in Seoul, Wonheungibangjuk in Cheongju in the central region, Changnyeong Isan Reservoir in the southern region, and Mangwonji in Daegu. This study presents Bufo gargarizans SI, a species endemic to Korea, whose population is rapidly declining due to large-scale housing site development and road development, and develops a Bufo gargarizans HSI model accordingly to improve the function of the damaged Bufo gargarizans habitat and to present an objective basis for site selection of alternative habitat. At the same time, it provides basic data for adaptive management and follow-up monitoring. The three basic habitat requirements of amphibians, the physical habitat requirements of Bufo gargarizans, synthesized with shelter, food, and water, and the characteristics of each life history, are classified into five components by adding space and threats through literature research and expert advice. Variables are proposed by synthesizing and comparing the general characteristics of amphibians, among the previously studied single species of amphibians, the components of HSI of goldfrogs and Bufo gargarizans, and the ecological and physical environmental characteristics of Bufo gargarizans. Afterwards, through consultation with an amphibian expert, a total of 10 variables are finally presented by adjacent forest area(ha), the distance between spawning area and the nearest forest land(m), the soil, the distance from the wetland(m), the forest layered structure, the low grassland space, the permanent wetland area(ha), shoreline slope(%), PH, presence of predators, distance from road(m), presence or absence of obstacles. n order to derive the final criteria for each of the 10 variables, the criteria(alternative) for each variable are presented through geographic information analysis of the site survey area and field surveys of the previously studied literature research area. After a focus group interview(FGI) of 30 people related to the Bufo gargarizans colony in Cheongju, a questionnaire and in-depth interviews with three amphibians experts are conducted to verify and supplement the criteria for each final variable. Based on the finally developed Bufo gargarizans HSI, the Bufo gargarizans habitat model is presented through the SI graph model and the drawing centering on the Bufo gargarizans spawning area

Evaluation of Habitat Suitability of Honey Tree Species, Kalopanax septemlobus Koidz., Tilia amurensis Rupr. and Styrax obassis Siebold & Z ucc. in the Baekdudaegan Mountains using MaxEnt Model (MaxEnt 모형을 활용한 백두대간에 자생하는 주요 밀원수종인 음나무, 피나무, 쪽동백나무의 서식지 적합성 평가)

  • Sim, Hyung Seok;Lee, Min-Ki;Lee, Chang-Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.50-60
    • /
    • 2022
  • In this study, habitat suitability was analyzed for three major honey tree species, namely Kalopanax septemlobus, Tilia amurensis, and Styrax obassis, in the Baekdudaegan Mountains using MaxEnt models. The AUC values indicating the prediction accuracies of the models were 0.747, 0.790, and 0.755 for K. septemlobus, T. amurensis, and S. obassis, respectively. The most important variables for K. septemlobus and T. amurensis were elevation, mean annual temperature, and slope, whereas mean annual temperature, elevation, and mean annual precipitation were the most important predictors for S. obassis. For all three studied species, elevation and mean annual temperature were the most important topographic and climatic factors, respectively, indicating that such variables are crucial for explaining species distribution. Honey tree species are essential resources in forest beekeeping, a high value-added process for improving forest income, and this study identified sites with the potential for management of such species in the Baekdudaegan Mountains, where it may be possible to establish a honey forest. However, the accuracy of the models should be improved through comprehensive analysis with abiotic variables, such as soil properties and aridity, which affect the distribution of honey tree species, as well as biotic variables, such as interspecific competition.