• Title/Summary/Keyword: slope area

Search Result 2,024, Processing Time 0.038 seconds

Temporal Variations of Sea Water Environment and Nutrients in the East Coast of Korea in 2013~2017: Sokcho, Jukbyeon and Gampo Coastal Areas (2013~2017년 동해 연안의 해양환경과 영양염의 시간적 변동 : 속초, 죽변, 감포 연안)

  • Kwon, Kee-Young;Shim, Jeong Hee;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.457-467
    • /
    • 2019
  • To investigate the long-term variation characteristics of nutrients in the east coast of Korea, water temperature, salinity, dissolved oxygen, and nutrients were measured at three stations of Sokcho, Jukbyeon and Gampo coasts for five years from 2013 to 2017. For five years, the water temperature of the East Sea coast was in the range of $1.2{\sim}28.8^{\circ}C$, the salinity was in the range of 30.63~34.79 and the dissolved oxygen (DO) was in the range of 3.53~7.64 mL/L. Distribution and variation of the water environment factors in the study area were determined by the vertical stratification of water column and distribution of water temperature. The high DO concentration in Sokcho coast From 2015 to August 2016 is presumed to be the result of the southward inflow of North Korean Cold Water (NKCW). Concentrations of dissolved inorganic nitrogen (DIN, $NH_4-N+NO_2-N+NO_3-N$) ranged $0.11{\sim}24.19{\mu}M$, phosphate concentration ranged $0.01{\sim}1.75{\mu}M$, and silicate ranged $0.17{\sim}32.80{\mu}M$. The N:P ratio was in the range of 0.7~54.3 (mean 15.2) and the N:P slope was in the range of 11.67~13.75. The N:P ratios in this study were lower than the Redfield ratio (16), indicating that nitrate did act as a limiting factor in phytoplankton growth. The correlation ($R^2$) of total N:P ratio was as high as 0.95, indicating that the effect of the surrounding land or non-point sources was not significant. In conclusion, the spatial and temporal variation of nutrients in the east coast of Korea was determined by the vertical mixing of water mass with thermocline and mainly affected by physical factors such as influx of external water masses and coastal upwelling, and the influences from inflows from the land were minimal.

A Study on the Botany of New Natural Habitats of Abeliophyllum distichum Nakai in the Byeonsanbando National Park (변산반도국립공원 내 새로운 미선나무 자생지의 식물학적 연구)

  • Oh, Hyun Kyung;Soh, Min Seok;Rho, Jae Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.4-25
    • /
    • 2011
  • This study was performed in 2010 to examine the flora and vegetation structure and chemical characteristics of soil in the growing community of Abeliophyllum distichum, located in the Byeonsanbando National Park. This Abeliophyllum distichum community has more individual numbers in Cheongrim-ni and Jungkye-ri, Byeonsan-myeon, and Buan-gun area, which is designated as a Natural Monument (No. 370), and also where the habitat conditions for Abeliophyllum distichum is more favorable. The authors recorded 100 taxa with 45 families, 82 genus, 93 species, 4 varieties, and 3 forms. Among them, species such as Abeliophyllum distichum (critically endangered), Asarum maculatum (near threatened) and Chionanthus retusa (near threatened), which are categorized as rare plants, were recorded. According to the list of Korean endemic plants, 4 taxa, particularly Philadelphus schrenckii, Abeliophyllum distichum, Weigela subsessilis, and Lonicera subsessili, were recorded. The community of Abeliophyllum distichum is located in the northwest slope of Baekcheon watershed and the community is comprised of healthy soil. The community structure was classified into three: the Castanea crenata community, Zelkova serrata community, and Quercus serrata community. The Castanea crenata community is composed of the Cornus walteri, Platycarya strobilacea, Zelkova serrata, Rhamnella frangulioides, arranged in terms of importance percentage. The Zelkova serrata community is composed of Celtis sinensis, Quercus aliena, Styrax japonica, and Acer pseudo-sieboldianum, also according to importance percentage. As for the Quercus serrata community, it is composed of Quercus variabilis, Castanea crenata, and Prunus sargentii, also arranged in terms of importance percentage. The importance percentage of Abeliophyllum distichum is 6.6% in the Castanea crenata community, 5.6% in the Zelkova serrata community and 5.1% in the Quercus serrata community. Moreover, in order of chemical characteristics of soil pH, electrical conductivity, available phosphoric, organic matter, and exchangeable cation (K, Ca, Mg) are analyzed. The No. 3 site was relatively higher than other districts of the same chemical characteristics of soil.

A Study on the Construction Characteristics of Folk Houses Designated as Cultural Heritage in Jeolla-do Province (전라도 지역 문화재 지정 민가정원의 현황 및 조영특성)

  • Jin, Min-Ryeong;Jeong, Myeong-Seok;Sim, Ji-Yeon;Lee, Hye-Suk;Lee, Kyung-Mi;Jin, Hye-Yeong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.25-38
    • /
    • 2020
  • For the purpose of recording Folk House Garden, this study was to review the historical value, location, space composition, Placememnt of the Building, garden composition, and management status of Folk House Garden designated as a cultural asset in Jeolla-do and to promote continuous maintenance and preservation in the future and enhance its value. The results of the study are as follows. First, most of them have been influenced by the trend of the times, such as the creation of a modern private garden and the spread of agricultural and commercial development through the garden components influenced by the royal, Japanese, and Western styles. Second, there are differences in the spatial composition of private households and the way they handle sponsorship, depending on the geographical location. When the geographical features were divided into flat and sloping areas, private houses located on flat land were divided into walls, walls were placed around the support area, and flower systems and stone blocks were created. The private houses located on the slope were divided into two to three tiers of space, and the wooden plant, flower bed, and stone bed were naturally connected to the background forest without creating a wall at the rear hill. Third, the size of the house and the elements of the garden have been partially destroyed, damaged, and changed, and if there is a lack of records of the change process, there is a limit to the drawing floor plan. There were many buildings and garden components that were lost or damaged due to changes in the trend and demand of the times, and some of them without records had to rely on the memory of owners and managers. Fourth, the species in Warm Temperate Zone, which reflects the climatic characteristics of Jeolla-do, was produced, and many of the exotic species, not traditional ones, were introduced. Fifth, fine-grained tree management standards are needed to prepare for changes in spatial function and plant species considering modern convenience.

Ecological Structure of Larix kaempferi in National Park (국립공원 내 일본잎갈나무림의 식생구조)

  • Choi, Song-Hyun;Lee, Sang-Hoon;Shin, Yong-Jin;Cho, Woo;Lee, Myung-Hoon;Kim, Jeong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.609-620
    • /
    • 2021
  • This study surveyed six national parks that included a wide range of afforestation among national parks in Korea to analyze the vegetation structure of Larix kaempferi, which occupies the highest ratio among planted areas. Plots were established considering the dominant ratio, diameter at breast height and afforestation area of Larix kaempferi. The purpose of the study was to provide basic data for ecological management to promote diversity. A total of 51 plots were selected based on 400 m2 quadrates. TWINSPAN was used for community classification, and each classified community was analyzed of importance percentage, species diversity, number of species, and populations. The community classification identified7 communities, all dominated by Larix kaempferi in the tree layer and classified by the appearance species of the subtree layer and shrub layer. In communities I, II, and VII that are located in the valley, Zelkova serrata, Morus bombycis, and Fraxinus rhynchophylla appeared, while dominated by Larix kaempferi were in the tree layer. Wetland deciduous broad-leaved species such as Fraxinus rhynchophylla and Morus bombycis frequently appeared in the subtree layer. In community III through VI is located on the slope, Quercus spp., such as Quercus mongolica and Quercus acutissima, mainly appeared while dominated by Larix kaempferi in the tree layer, and Quercus and wetland broad-leaved species frequently appeared in the subtree layer and shrub layer. The average species diversity of Larix kaempferi in the surveyed six national parks was 1.2090, with community III the highest at 1.5413 and community VI the lowest at 0.7042. The average number of species was 9.35±2.90, and the average population was 226.05±89.98.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Characteristics of Environmental Factors and Vegetation Community of Zabelia tyaihyonii (Nakai) Hisauti & H.Hara among the Target Plant Species for Conservation in Baekdudaegan (백두대간 중점보전종인 댕강나무의 식생 군집 및 환경인자 특성)

  • Kim, Ji-Dong;Lee, Hye-Jeong;Lee, Dong-Hyuk;Byeon, Jun Gi;Park, Byeong Joo;Heo, Tae-Im
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.201-223
    • /
    • 2022
  • Currently, species extinctions are increasing due to climate change and continued anthropogenic impact. We selected 300 species for conservation with emphasis on plants co-occurring in the Baekdudaegan area, which is a large ecological axis of Korea. We aimed to investigate the vegetation community and environmental characteristics of Zabelia tyaihyonii in the limestone habitat among the target plant species in the Baekdudaegan region to derive effective conservation strategies. In Danyang-gun, Yeongwol-gun, and Jecheon-si, we selected 36 investigation sites where Z. tyaihyonii was present. We investigated the vegetation, flora, soil and physical environment. We also found notable plants such as Thalictrum petaloideum, Sillaphyton podagraria, and Neillia uekii at the investigation sites. We classified forest vegetation community types into 4 vegetation units and 7 species group types. With canonical correspondence analysis (CCA) of the vegetation community and habitat factors, we determined the overall explanatory power to be 75.2%, and we classified the environmental characteristics of the habitat of Z. tyaihyonii into a grouping of three. Among these, we detected a relationship between the environmental factors elevation, slope, organic matter, rock ratio, pH, potassium, and sodium. We identified numerous rare and endemic plants, including Thalictrum petaloideum, in the investigation site, and determined that these groups needed to be preserved at the habitat level. In the classification of the vegetation units analyzed based on the emerging plants and the CCA, we reaffirmed the uniqueness and specificity of the vegetation community in the habitat of Z. tyaihyonii. We anticipate that our results will be used as scientific evidence for the empirical conservation of the native habitats of Z. tyaihyonii.

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

A Study on the Selection of Evaluation Index for Private-Initiated Park Development Project Using FGI (Focus Group Interview) (FGI를 활용한 민간공원 특례사업 평가항목 선정 연구)

  • Kim, Jong-Ho;Kim, Gun-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.70-83
    • /
    • 2022
  • This study aims to select evaluation items that can be used in planning park creation to evaluate the proposal to solve the environmental and social problems in promoting private-initiated park development projects. To this end, evaluation items that can consider various aspects of the development project were selected, and the indicators' validity and appropriateness were carried out through an expert Focus Group Interview (FGI). Firstly, an expert FGI was performed for six major categories and 50 evaluation items derived from literature reviews and brainstorming. As a result, five major and 27 middle category items were selected. Based on the derived major and middle classification items, 95 detailed items were selected. Secondly, 55 sub-items were derived through a suitability questionnaire. As a result of the suitability survey, the average scores of the subcategories for the major categories of natural environment, function of parks, and use of land were relatively high. The average scores for environmental index items such as ecology/vegetation, topography and slope, landscape, park service, wildlife, wide-area ecosystem, and park items were high in the middle classification. The average score of indicators in the natural environment was relatively high, and the average score in the function of parks also soared. In the environmental impact assessment, the occurrence of plan change issues, including the reappraisal of the location, led to unclear detailed evaluation factors for the faithfulness of the plan and the appropriateness of the plan direction. This study is significant in that it is a study on the selection of evaluation items that can minimize the problem of plan alteration and achieve objective evaluation when promoting development projects. This study could be used to forward development projects in the future and evaluate long-term unexecuted urban parks.

The Infrared Medium-deep Survey. VIII. Quasar Luminosity Function at z ~ 5

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Pak, Soojong;Hyun, Minhee;Taak, Yoon Chan;Shin, Suhyun;Lim, Gu;Paek, Gregory S.H.;Paek, Insu;Jiang, Linhua;Choi, Changsu;Hong, Jueun;Ji, Tae-Geun;Jun, Hyunsung D.;Karouzos, Marios;Kim, Dohyeong;Kim, Duho;Kim, Jae-Woo;Kim, Ji Hoon;Lee, Hye-In;Lee, Seong-Kook;Park, Won-Kee;Yoon, Yongmin;Byeon, Seoyeon;Hwang, Sungyong;Kim, Joonho;Kim, Sophia;Park, Woojin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.34.3-34.3
    • /
    • 2020
  • Faint z ~ 5 quasars with M1450 ~ -23 mag are known to be the potentially important contributors to the ultraviolet ionizing background in the post-reionization era. However, their number density has not been well determined, making it difficult to assess their role in the early ionization of the intergalactic medium (IGM). In this work, we present the updated results of our z ~ 5 quasar survey using the Infrared Medium-deep Survey (IMS), a near-infrared imaging survey covering an area of 85 square degrees. From our spectroscopic observations with the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South 8 m Telescope, we discovered eight new quasars at z ~ 5 with -26.1 ≤ M1450 ≤ -23.3. Combining our IMS faint quasars with the brighter Sloan Digital Sky Survey (SDSS) quasars, we derive, for the first time, the z ~ 5 quasar luminosity function (QLF) without any fixed parameters down to the magnitude limit of M1450 = -23 mag. We find that the faint-end slope of the QLF is very flat (-1.2) with a characteristic luminosity of -25.7 mag. The number density of z ~ 5 quasars from the QLF gives lower ionizing emissivity and ionizing photon density than those in previous works. These results imply that quasars are responsible for only 10-20% of the photons required to completely ionize the IGM at z ~ 5, disfavoring the idea that quasars alone could have ionized the IGM at z ~ 5.

  • PDF

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.