• 제목/요약/키워드: slip risk

검색결과 45건 처리시간 0.023초

점도변화에 따른 바닥 오염물질의 미끄러짐 저항 특성 (Slip Resistance of Contaminants on the Floor for Variation of Viscosity)

  • 박재석;오환섭
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.185-189
    • /
    • 2012
  • While there is no standards on slip risk for contaminants on surface, glycerol is described in standard contaminant for measuring coefficient of friction(COF) and slip resistance such as ISO 13287. But that is just used to measure the slip resistance of surface materials and shoes not to evaluate the contaminant materials. Therefore the objective of this study was to find out the relationship between standard contaminant and the contaminants used usually at the workplaces. For this, some measurement criteria were acquired from the analysis based on biomechanics and kinetics of human gait during slips. The slip resistance according to viscosity of the contaminants was measured applying the criteria and slip probability was determined by the gait analysis. Some factors which should be considered when measuring the slip resistance were identified. The velocity, acceleration, contact time and contact pressure should be 1 m/sec, 10 $m/sec^2$, 350 kPa and less than 0.5sec respectively. The variation of viscosity according to temperature for working oils was different from that of standard contaminant. The static coefficient of friction (SCOF) of working oils was almost 0.5 times as large as the SCOF of standard contaminant. So it was assumed to be difficult to compare the contaminants at the workplaces with the glycerol as a standard contaminant for estimating the slip risk.

A Study of Cognitive Slips According to Contaminants on the Floor

  • Kim, Jong-Il;Park, Min Soo;Kim, Tae-Gu
    • Safety and Health at Work
    • /
    • 제9권2호
    • /
    • pp.180-183
    • /
    • 2018
  • Background: This research investigates the degrees of slipperiness felt by the participants who walk on contaminants applied to a floor surface to decide degrees of slipperiness for various contaminants. Methods: For the experiment, 30 participants walked on a floor to which six contaminants were applied. All participants took the analytic hierarchy process (AHP)-based slipperiness questionnaire survey for the six kinds of contaminants, and the results were compared with the coefficient of friction. Results: The results of slip risk from the AHP indicate that grease is the most slippery of the six contaminants, followed by diesel engine oil, hydraulic oil, cooking oil, water-soluble cutting oil, and water in a decreasing order of slipperiness. When the results of slip risk from the AHP are compared with the static coefficient of friction for each contaminant, the order of slip risk follows the same trend. Although the results of slip risk from the AHP coincide with the static coefficient of friction, further study would be needed to investigate this relationship. Conclusion: This study will contribute as reference material for future research on preventing industrial accidents that result in falls from high places due to slipping.

경사인장형 바닥 미끄럼 시험방법의 표준화에 관한 연구 (A Study of Standardization of Floor Slip Test method using O-Y·PSM)

  • 신윤호;강용학;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.95-96
    • /
    • 2016
  • The floor slip test method using O-Y·PSM was developed based on the risk assessment and sense of slip by the users implementing actions such as changing walking direction on a floor. This test method is regulated under the Korea Industrial Standard KS M 3510, and in the Korea Industrial Standard KS F 3230, the article of KS M 3510 is cited. Yet, in the standard, the surface condition of test or slip adjustment method is merely mentioned or difficult to be found, and thus it creates confusion in floor slip test using O-Y·PSM. Therefore, this study is to provide the useful data to revise the relative standard through the standardization study including various surface conditions of sample and slip adjustment method used in floor slip test method using O-Y·PSM.

  • PDF

넘어짐(전도) 재해예방 안전기준 개정(안) 연구 (A study of improvement on safety regulation for slip, trip and fall prevention)

  • 김정수
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 춘계학술대회
    • /
    • pp.19-29
    • /
    • 2013
  • Slips and falls are associated with many occupational injuries in Korea. It is also estimated that slipping are major contributors to slip, trip and fall injury burden. So "LOCAL RULE ON OCCUPATIONAL SAFETY AND HEALTH STANDAR D" must be improved, especially article 3(prevention of slip, trip and fall). The primary purpose of the present study is to determine if, and to what extent, the standard could be improved in present environment. In order to fulfill our objective, the another regulation in Korea and foreign countries were investigated and reviewed. Many kind of standard, mandatory documents and guideline were also reviewed. And then, regulations, standard, guideline etc. reviewed were compared with each others. The article 3 was revised as below. 1. The floors of the traffic route in workplace shall have no hole or slope, or be uneven or slippery so as, in each case, to expose employees to slip, trip and fall risk, except if adequate measures have been taken to prevent a employees falling. 2. The employer shall design, install and fix the drain for effective drainage if fluid contaminants were frequently occurred. So far as is reasonably practicable, An employer shall keep the workplace clean, sanitary, and dry so that employees won't have any risk to tripping or slipping at the workplace. 3. To facilitate cleaning, every floor, workplace, and passageway shall be, so far as is reasonably practicable, kept free from protruding objects, splinters, holes, etc. Also, some criteria was developed in this study. Standard and criteria developed in this study will help to prevent slip, trip, and fall injuries.

  • PDF

인간의 보행 및 미끄러짐 특성에 기반한 끌기형 미끄러짐 저항 측정 조건 (Measurement Criteria for Drag-Sled Type Slip Resistance Tester Based on Human Gait and Slip)

  • 박재석;권혁면;오환섭
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.179-184
    • /
    • 2012
  • This study was performed to find out the measurement criteria of slip resistance from analysis of human gait and slips. Many kinds of slip resistance testers were developed based on mechanical friction testers. But, there are, as yet, no unambiguous slip resistance measurement methodologies and generally accepted safety criteria or safety thresholds for estimating slipping hazard exposures. Also, there are variety of measuring conditions between those testers. The measurement criteria should be tested within the range of human slipping conditions observed in biomechanical studies. It's results should clearly consider whether the devices reflect the human slipping conditions. In this study a dragsled type friction tester, which was constructed in accordance with ISO 15133 basically, was used. Test conditions were set in order to determine the range of measurement criteria. It is shown that drag velocity should be more than 1 m/s, acceleration be more than 10 $m/s^2$, contact time be less than 0.1sec, and contact pressure be within 350~400 kPa.

Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

  • Kim, In-Ju
    • Safety and Health at Work
    • /
    • 제9권1호
    • /
    • pp.17-24
    • /
    • 2018
  • Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents.

미끄럼방지 노인화에 대한 생체역학적 분석 (Biomechanical Analysis of the Non-slip Shoes for Older People)

  • 이은영;손지훈;양정훈;이기광;곽창수
    • 한국운동역학회지
    • /
    • 제23권4호
    • /
    • pp.377-385
    • /
    • 2013
  • Fall is very fatal accident causes death to older people. Shoe may affect to fall. Shoe influences risk of slips, trips, and falls by altering somatosensory feedback to the foot. The purpose of this study was to investigate the analysis of non-slip shoes for older people and influence on older people's lower extremity. For this study twenty three healthy older people were recruited. Each subjects walked over slippery surfaces (COF 0.08). Four pairs of non-slip shoes (shoe A had the greatest COF, 0.23 while shoe B, C, and D had smaller COF relatively) for older people were selected and tested mechanical and biomechanical experiment. For data collection motion capture and ground reaction forces were synchronized. There were statistically significant differences for slip-displacement, coefficient of friction, braking force, propulsion force, knee range of motion and knee joint stiffness by shoes. It was concluded that shoe A was the best for non-slip function because of the lowest slip displacement, the highest braking and propulsion forces, and the highest mechanical and biomechanical coefficient of friction where as shoe B, C, D were identified as a negative effect on the knee joint than shoe A. To prevent fall and slip, older people have to take a appropriate non-slip shoes such as shoe A.

병원 내 다양한 구역의 미끄럼 위험성 평가 연구 (The Evaluation for Slip Risk of Various Hospital's zones)

  • 강현수;박범
    • 대한안전경영과학회지
    • /
    • 제18권3호
    • /
    • pp.81-89
    • /
    • 2016
  • Floor slipperiness is a leading cause in slip and fall accidents which are a major source of occupational injuries in Korea. Researchers have estimated the slip and fall related accidents rank number one or two in number of the injured. The objectives of this study were to find the field contamination effect and improvement countermeasure. Slipping and falling are common accidents in large public facilities, especially facility which vulnerable adults generally use as like hospital. So, we measured the coefficient of friction of several floors on the floor in hospital, under dry and wet using BOT-3000. The results of the coefficient of friction measurements showed that floor type and surface conditions were all significant factors affecting the coefficient of friction. The most surprising finding of this study was that there were significant friction improvement when the floors were properly cleaned with cleaning equipments.

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석 (Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project)

  • 김아람;김형목;김현우;신영재
    • 터널과지하공간
    • /
    • 제27권2호
    • /
    • pp.89-99
    • /
    • 2017
  • 이산화탄소 지중저장 사업의 성공적인 수행을 위해서는 저장시스템의 안정성을 확보할 수 있는 대상 지층을 선정하고 현장 지질조건에 최적화된 주입 조건을 설계해야 한다. 본 연구에서는 국내 실증실험 대상 예상후보지의 하나인 장기분지의 지질구조를 바탕으로 2차원 간략해석모델을 구축하고 TOUGH-FLAC 연계해석기법을 사용하여 초기응력조건과 주입량이 이산화탄소 격리저장시스템에 미치는 영향을 분석하였다. 기초해석 결과, 수직응력이 수평응력보다 우세한 정단층 응력조건에서 전단미끄러짐 가능성이 가장 높은 결과를 보였으며, 단위시간당 주입량을 달리하는 주입량 시나리오 해석에서는 주입량을 단계적으로 증가시켜 주입하는 경우가 공극압의 증가폭이 가장 크고 활동마찰계수를 이용한 전단미끄러짐 가능성 평가 결과에서도 가장 불리한 것으로 평가되었다.