• Title/Summary/Keyword: slip hinge

Search Result 22, Processing Time 0.027 seconds

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Columns with Lap Splices (주철근 겹침이음을 갖는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈;김운학;신현목;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.931-936
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. Lap splicing is also permitted if hoops or spiral reinforcement are provided over the lap length in the current seismic design provision. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is the analytical prediction of nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is considered.

  • PDF

Seismic Performance of a Non-Seismic Designed Pier Wall and Retrofit Concept (비내진 벽식 교각의 내진성능 및 보강개념)

  • Hoon, Lee-Jae;Ho, Choi-Young;Soon, Park-Kwang;Seok, Ju-Hyeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.87-98
    • /
    • 2009
  • It is well known that reinforcement details in the plastic hinge region of bridge piers give the most important effects on the seismic performance of bridges, from investigations of bridge failures in many earthquake events and in laboratory tests. Longitudinal reinforcement details give larger effects than lateral reinforcement details do. The lap-spliced longitudinal steel shows slip during earthquake events, which results in low ductility and inadequate seismic performance. However, before the issue of the earthquake design code, a considerable number of bridge piers were constructed with lap-spliced longitudinal steel in the plastic hinge region. Therefore, a large amount of research has been conducted on the seismic performance and retrofit of circular and rectangular shaped bridge columns with lap-spliced longitudinal steel. However, research on wall type piers is very limited. This paper investigates the seismic performance of a pier wall by a quasi-static test in the weak axis direction and proposes a retrofit method. From the test with variables being the longitudinal steel detail and the transverse steel amount, it is shown that the currently used definition of yield displacement is not adequate. Therefore a new definition of yield displacement for the ductility investigation for a pier wall is proposed. In addition, a retrofit method by steel plates and bolts is proposed to improve ductility, and test results show that slip of the longitudinal steel is prevented by up to a considerably large displacement.

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

A Study on the Moment-Curvature Relation of Hollow RC piers considering Tension Stiffening Effect (인장강성효과를 고려한 중공단면 교각의 모멘트-곡률 관계에 대한 연구)

  • Park Young Ho;Kim Se Hun;Choi Seung Won;Oh Byung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.17-20
    • /
    • 2005
  • Moment-curvature relation of RC pier is influenced greatly in occurrence form of crack and difference is happened according to consideration existence and nonexistence of tension stiffening effect. However, studies considering these is very insufficient misgovernment. Also, it is sometimes unavoidable lap splice of axial reinforcement in plastic hinge region of RC piers. However, specific design standard about lap splice of axial reinforcement is unprepared real condition and study about effect that lap splice of axial reinforcement get in occurrence form of crack is insufficient misgovernment. Therefore, in this paper, experiments are performed with hollow RC piers that do lap splice of axial reinforcement by main variable. And this study present analytical method about moment-curvature relation of hollow RC pier that consider tension stiffening effect and analyze effect that lap splice of axial reinforcement gets in occurrence form of crack. Analytic method of moment-curvature relation of RC pier that present in this study shows very similar motion with experiment result and crack interval of RC pier is suffering dominate impact in the augmented reinforcement amount by lap splice and average crack interval decreases as lap splice ratio increases.

  • PDF

Seismic Performance of Prefabricated Composite Column for Accelerated Bridge Construction (급속시공을 위한 조립식 합성교각의 내진성능 평가)

  • Lee, Jung-Woo;Chin, Won-Jong;Joh, Chang-Bin;Kwark, Jong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.425-430
    • /
    • 2010
  • This paper investigates the seismic behavior of a prefabricated composite column which is made by onsite connection of precast composite column segments to accelerate bridge construction. Quasi-static cyclic loading tests were performed on three prefabricated composite columns with different connection details to find their seismic capacity. Test results show that the onsite connections remains in elastic range and no slip is observed as designed in spite of plastic hinge formation at the column. The test results also indicate that the prefabricated composite column has better overall seismic capacity compared to a conventional reinforced concrete column with seismic details.

Structural Analysis of the North Sobaegsan Massif in the Sangun-myeon area, Bonghwa-gun, Korea (봉화군 상운면지역에서 북부 소백산육괴의 지질구조 해석)

  • 강지훈;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.254-270
    • /
    • 2000
  • To clarify the geological structure of North Sobaegsan Massif in the Sangunmyeon area, Bonghwagun, Korea, where the Yecheon Shear Zone passes and the NE-SW and E-W trending structural lineaments are developed, the rock-structures of its main constituent rocks(Precambrian Won-nam Formation and Mesozoic Hornblende Granite) were examined. In this area, the geological structure was formed at least by four phases of deformation after the formation of gneissosity or schistosity of the Wonnam Formation: one deformation before D2 ductile shearing related to the for-mation of the Yecheon Shear Zone and two deformations after that. The NE-SW and E-W trending structural lineaments were formed by a giant open or gentle type of F4 fold, and their trends before D4 deformation are interpreted to be parallel to the orientation(ENE-WSW trend) of folded surface in the F4 hinge zone. The structural features of Dl-D3 deformations and their relative occurrence times are as follows. Dl deformation is formative period of the boudin structures and ENE-WSW trending isoclinal folds with sub-horizontal hinge lines and steeply inclined axial surfaces. D2 deformation is that of the mylonite foliation, stretching lineation and Z-shaped asymmetric folds related to top-to-the ENE dextral strike-slip shearing on the distinct foliations of Wonnam Formation(after intrusion of Mesozoic Hornblende Granite). D3 deformation is that of the ENE trending S-shaped asymmetric folds with sub-horizontal hinge lines and axial surfaces related to normal-slip shearing on the distinct foliations. It is expected that the result will be contributed to as valuable data for interpreting the tectonic evolution of the North Sobaegsan Massif and the Northeast Ogcheon Belt whose tectonic lineaments are changed from NE-SW to E-W trends at the Sindong-Bonghwa line.

  • PDF

Evaluation of Steel Pull-Out of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부 철근의 뽑힘 평가)

  • Woo, Jae-Hyun;Park, Jong-Wook;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.833-841
    • /
    • 2010
  • In this report, the test results of five reinforced concrete beam-column joint subjected to cyclic load are presented. The main purpose of the research is to investigate the influence of the steel pull-out of the beam-column joints to the shear and ductile capacity of the RC beam-column assembles. In addition, the influence of the amount of beam reinforcement to the joint shear and ductile capacity is evaluated. Test results indicate that the yield penetration of steel bar increases as the joint shear strength ratio, $V_{j1}/V_{jby}$ decreases. And the slippage of the steel bars are varied according to the region of the beam-column joints. The pull-out of the steel bars of five specimens was almost the same regardless of the joint shear strength ratio, $V_{j1}/V_{jby}$. Because it was affected by not only the yield penetration of steel bar but also the axial elongation in the plastic hinge.

Seismic Performance Evaluation of Reinforced Concrete Bridge Piers with Lap Splices (철근의 겹침이음을 고려한 철근콘크리트 교각의 내진성능평가)

  • 김태훈;박현용;김병석;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.31-38
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is to analytically predict nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is also considered, The proposed numerical method for seismic performance evaluation of reinforced concrete bridge piers with lap splices is verified by comparison with reliable experimental results.