• Title/Summary/Keyword: slip boundary condition

Search Result 88, Processing Time 0.021 seconds

A Study on the Numerical Stability and Accuracy of Lattice Boltzmann Method with Non-equilibrium first order extrapolation boundary condition (비평형 1 차 외삽 경계조건을 이용한 격자 볼츠만 법의 수치적 안정성 및 정확도에 관한 연구)

  • Jeong, Hae-Kwon;Kim, Las-Sung;Lee, Hyun-Goo;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2684-2689
    • /
    • 2007
  • Non-equilibrium first order extrapolation boundary condition proposed by Guo et $al.^{(9)}$ proposed has a good application for complex geometries, a second order accuracy and a treatment on non-slip wall boundary condition easily. However it has a lack of the numerical stability from high Reynolds number. Guo et $al.^{(9)}$ substituted the density value of adjacent nodes for the density of boundary nodes. This procedure causes the numerical instability on the boundary. In this paper, we derived a procedure of density extrapolation and compared to previous results.

  • PDF

Second Order Bounce Back Boundary Condition for the Latice Boltzmann Fluid Simulation

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2000
  • A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.

  • PDF

A Study of ADS Slip Ratio Control using Solenoid Valve (전자밸브를 이용한 ABS 슬립율 제어에 관한 연구)

  • Choi, Jong-Hwan;Kim, Sung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.676-681
    • /
    • 2001
  • ABS is a safety device, which adds hydraulic system to the existing brake system to prevent wheel from locking, so we can obtain maximum braking force on driving. The hydraulic system to control braking pressure consists of sol-flow type using solenoid valve, flow control valve or consists of sol-sol type using two solenoid valve. In this paper, the hydraulic system in ABS is composed of sol type using a 3port-2position solenoid valve, and vehicle system is composed of 1/4 vehicle model. And slip ratio is controlled using PWM (Pulse-Width-Modulation) control algorithm. Braking friction coefficient and tracking friction coefficient which are described by slip ratio's function have maximum value when slip ratio has its value from 0.1 to 0.3. And slip ratio is controlled constantly in this boundary value even in the variation of road's condition in some boundary.

  • PDF

Effects of Surface Roughness and Interface Wettability in a Nanochannel (나노 채널에서의 표면 거칠기와 경계 습윤의 효과)

  • Choo, Yun-Sik;Seo, In-Soo;Lee, Sang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.

Analysis of Velocity Structures and Shear Stresses by Parameters and Internal Boundary Conditions of Depth-averaged Flow Model (수심평균 유동 모형의 매개변수와 내부 경계조건에 따른 유속구조 및 전단력 분석)

  • Song, Chang Geun;Woo, In Sung;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.54-60
    • /
    • 2013
  • In this study, a finite element model based on the SU/PG scheme was developed to solve shallow-water equations and the influences of parameters and internal boundary conditions on depth-averaged flow behavior were investigated. To analyze the effect of roughness coefficient and eddy viscosity on flow characteristics, the developed model was applied to rectangular meandering channel with two bends, and transverse velocities and water depth distributions were examined. As the roughness coefficient adjacent to wall increased, the velocities near the wall decreased, and the reduced velocities were compensated by the expanding mid-channel velocities. In addition, the flow characteristics around a circular cylinder were analyzed by varying the internal boundary conditions as free slip and no slip. The assignment of slip condition changed the velocity distribution on the cylinder surface and reduced the magnitude of the shear stress up to one third.

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

Fluorescence Quenching of Coumarin Laser Dyes by N,N-dimethylaniline (N,N-dimethylaniline에 의한 Coumarin 색소분자의 형광 소광)

  • Park, Guk Hee;Kang, Tai Jong
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.22-27
    • /
    • 1998
  • Fluorescence quenching of coumarin 153 and coumarin 481 with N,N-dimethylaniline in various solvents was investigated. Quenching rate constants are related to diffusion-limited rate constants to some extent. It is noted that smaller discrepancy was observed between the diffusion-limited rate constant and the experimental quenching rate constant when the stick boundary condition rather than the slip boundary condition was applied for estimating the diffusion coefficients. In nonpolar solvent like cyclohexane fluorescence quenching is adequately explained by the diffusion controlled process within the experimental error, but in acetonitrile the quenching rate constant was estimated to be consistently smaller than the diffusion limited rate constant. This may suggest that fluorescence quenching of coumarin dyes be affected not only by the molecular diffusion but also by the intramoleccular process such as charge separation.

  • PDF

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Finite Element Analysis for Circulation Phenomena in Sudden Expansion of Open Channel (유한요소법을 이용한 개수로단면급확대부의 순환현상해석)

  • 윤태훈;서승원
    • Water for future
    • /
    • v.21 no.1
    • /
    • pp.67-76
    • /
    • 1988
  • Analyzed was the circulation phenomena in the open channel with sudden expansion, by applying the Galerkin's finite element method to the depth-averaged 2-dimensional continuity and momentum equations. Wave tests were done in the simplified channel in order to review the validity of this newly developed model and the computed results were within 0.5% of $L_2$-norm error, and application of this model to the simulation of simplified dam-break gave very close results compared with the analytical solution, thus, it can be concluded that this model is valid and efficient. The main flow in the expanded channel was defined as a new initial condition with given velocity and the flow in the expanded portion was at rest in simulating the circulation, and besides the Neumann's condition the slip boundary condition for lateral wall was found to be proper condition than the no-slip condition. It can be concluded, from the numerical tests in the sudden expension, that the circulating phenomena depend mainly on the convective inertia and the effect of turbulence due to bottom shear and lateral shear is insignificant.

  • PDF

Effect of Aspect Ratio on Gas Microchannel Flow (마이크로채널 흐름에 관한 종횡비의 영향)

  • Tajul, Islam;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.16-21
    • /
    • 2007
  • Three dimensional numerical study was carried out to investigate the effect of aspect ratio on microchannel flow. We considered five straight rectangular channels with aspect ratios (height/width) 0.2, 0.4, 0.6, 0.8 and 1.0. Nitrogen gas flow was investigated for both slip and noslip wall boundary conditions. Isothermal wall condition was assumed. We used control volume method for this simulation. The slip velocity increases with the increase of aspect ratio. Friction coefficient decreases with the increase of aspect ratio. Slip friction coefficient is lower than noslip friction coefficient. Mass flow rate of slip model is higher than that of noslip model. We compared our results with the experimental result reported in the literature. The agreement was good.

  • PDF