• Title/Summary/Keyword: slim-floor

Search Result 30, Processing Time 0.025 seconds

Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire

  • Zaharia, R.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.171-185
    • /
    • 2012
  • The calculation of fire resistance for a composite structural element comprises the calculation of the temperature within its cross-section and of the load bearing capacity, considering the evolution of the steel and concrete mechanical properties, function of the temperature. The paper proposes a method to calculate the bending capacity under ISO fire, for Slim Floor systems using asymmetric steel beams, with a wider lower flange or a narrow upper flange welded onto a half hot-rolled profile. The temperatures in the cross-section are evaluated by means of empirical formulas determined through a parametrical analysis, performed with the special purpose non-linear finite element program SAFIR. Considering these formulas, the bending capacity may be calculated, using an analytical approach to determine the plastic bending moment, for different fire resistance demands. The results obtained with this simplified method are validated through numerical analysis.

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

The Dynamic Interaction Between Propulsion And Levitation System In a MAGLEV (자기부상열차의 추진시스템과 부상시스템의 상호 영향)

  • 김국진;강병관;이종성
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.119-128
    • /
    • 1998
  • An electromagnets and a single-sided linear induction motor(SLIM) are used for suspension and propulsion equipment respectively. The electromagnets and SLIM are installed in the same frame, called a bogie, to reduce the volume under the vehicle floor and to raise the response charateristics to follow the track. Then the 3-dimensional forces(thrust force, normal force, side force) generated by SLIM direct]y affect the suspension system as the disturbance force. Moreover, in the running condition, the gap length variation in the electromagnets is the same as the SLIM. Therefore, the mutual interaction between the electromagnets and the SLIM is an important problem to realize the smaller gap length. In this paper, the dynamic interaction is analyzed and confir

  • PDF

A Study on the Size of the Back Slit for Tight Skirts - In the Case of Walking on the Floor or Stairways - (동작에 따른 타이트스커트의 뒤트임 분량에 대한 연구 -보행시와 계단 승강시 -)

  • Kim Chung Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.4 s.44
    • /
    • pp.485-493
    • /
    • 1992
  • Three kinds of tight skirts, slim type, straight type, and semi-tight type were investigated to obtain necessary information about the size of the back slit. Fourteen college students put on these experimental clothes and walked on the flat floor, going up and down the stairs. The dimensions of the back slit were measured by width and length. The stride length was taken from the record of footprints of walking. The correlation between the body measurement, stride length and the size of the back slit was studied. As a result of this experiment, the findings are as follows: 1. The size of the back slits differed from each skirt type at the level of p<0.001. In the case of walking on the floor, the average dimension of the back slit was 14.0 cm long 5.0 cm wide for the slim type,9.5 cm long 2.8 cm wide for the straight type and 2.1 cm long 0.5 cm wide for the semi-tight type. 2. In the case of walking on the stairways, the average dimension of the back slit was 16.0 cm long 5.8 cm wide for the slim type, 12.4 cm long 3.9 cm wide for the straight type and 3.1 cm long 1.1 cm wide for the semi-tight type. 3. The correlation between the height (stature, waist height, knee height) and the size of back slit was 0.3 to 0.6. The correlation between the girth (waist, hip) and the size of back slit was 0.3 to -0.5. 4. The correlation between the stride length and the size of back slit was 0.76 for the slim skirt, 0.56 for the straight skirt, 0.28 for the semitight skirt.

  • PDF

Fire Resistance Evaluation of SLIM AU Composite Beam (슬림 AU 합성보 내화성능 평가)

  • Oh, Myoung-Ho;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.53-58
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam was developed for reducing the story height in the residential buildings, and saving the cosrtuction cost of floor structures. Structural performance and economic feasibility of the composite beam have been sufficiently approved through the structural experiments and the analytical studies. However, the verification for fire safety is necessary for the practical application of the composite beam. The fire resistance tests with and without loading were performed for the fire safety verification, and the test results were summarized in this paper.

An Experimental Study on Structural Behaviour of Asymmetric H Beam Slim floor under Load Condition in Fire (내화 피복된 비대칭 H형강을 적용한 슬림플로어 보의 재하가열조건 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Hyung-Jun;Min, Byung-Youl;Lee, Jae-Sung;Park, Soo-Yong
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • When it comes to slim floor using asymmetric H-beam, it was designed that the steel member is embedded in concrete with relatively low thermal conductivity so as to minimize the deterioration of rigidity of steel member in fire. But given the bottom flange of asymmetric H-beam is directly exposed to the fire, the measure of applying the fireproof coating to improve the fire rate performance of slim floor beam was sought. The test was aimed at comparing the fireproof performance by adjusting the load ratio of 0.4 and 0.3, and The test was carried out to identify the 3-hour fire performance by reinforcing the beam as well as applying the fireproof coat, In the wake of comparing the specimen depending on variation of load ratio, lowering load ratio by 0.1 resulted in difference of 12 minutes and deflection was 39 mm. It was able to improve 12 minutes by reinforcing the beam and up to 102.4 mm in deflection.

Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams

  • Hosseinpour, Emad;Baharom, Shahrizan;Badaruzzaman, Wan Hamidon W.;Shariati, Mahdi;Jalali, Abdolrahim
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.485-499
    • /
    • 2018
  • In this paper, a hollow steel tube (HST) shear connector is proposed for use in a slim-floor system. The HST welded to a perforated steel beam web and embedded in concrete slab. A total of 10 push-out tests were conducted under static loading to investigate the mechanical behavior of the proposed HST connector. The variables were the shapes (circular, square and rectangular) and sizes of hollow steel tubes, and the compressive strength of the concrete. The failure mode was recorded as: concrete slab compressive failure under the steel tube and concrete tensile splitting failure, where no failure occurred in the HST. Test results show that the square shape HST in filled via concrete strength 40 MPa carried the highest shear load value, showing three times more than the reference specimens. It also recorded less slip behavior, and less compressive failure mode in concrete underneath the square hollow connector in comparison with the circular and rectangular HST connectors in both concrete strengths. The rectangular HST shows a 20% higher shear resistance with a longer width in the load direction in comparison with that in the smaller dimension. The energy absorption capacity values showed 23% and 18% improvements with the square HST rather than a headed shear stud when embedded in concrete strengths of 25 MPa and 40 MPa, respectively. Moreover, an analytical method was proposed and predicts the shear resistance of the HST shear connectors with a standard deviation of 0.14 considering the shape and size of the connectors.

Flexural Capacity of the Encased(Slim Floor) Composite Beams with Web Openings -Deep Deck Plate and Asymmetric Steel Beam to be Welded Cover Plate- (매립형 (슬림플로어) 유공 합성보의 휨성능 평가 -춤이 깊은 데크플레이트와 비대칭 H형강 철골보-)

  • Kwak, Myong Keun;Heo, Byung Wook;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.575-586
    • /
    • 2004
  • This paper presents an experimental study on the flexural capacity of an encased(slim-floor) composite beam, which is a wider plate under bottom flange of H-beam with web openings. Five simple full-scale bending tests were conducted on the encased(slim-floor) composite beams at varying steel beam heights (250mm and 300mm), positions of web openings, and loading conditions. The test results revealed that the web-open encased composite beam had sufficient composite action, without any additional shear connection devices, because of the inherent shear-bond effects between the steel beam and the concrete, and a stable structural performance without web-opening reinforcements.

Loading capacity of simply supported composite slim beam with deep deck

  • Shi, Yongjiu;Yang, Lu;Wang, Yuanqing;Li, Qiuzhe
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2009
  • The composite slim beam has become popular throughout Europe in recent years and has also been used on some projects in China. With its steel section encased in a concrete slab, the steel-concrete composite slim beam can provide the floor construction with minimum depth and high fire resistance. However, the design method of the T-shape steel-concrete composite beam is no longer applicable to the composite slim beam with deep deck for its special construction, of which the present design models are not available but mainly depend on experiences. The elevation of the flexural stiffness and bending capacity of composite slim beams with deep deck is rather complicated, because the influences of many factors should be taken into account, such as the variable section dimensions, development of cracks and non-linear characteristics of concrete, etc. In this paper, experimental investigations have been conducted into the flexural behavior of two specimens of simply supported composite slim beam with deep deck. The emphases were laid on the bonding force on the interface between steel beam and concrete, the stress distribution of beam section, the flexural stiffness and bending capacity of the composite beams. Based on the experimental results, the reduction factor of equivalent stress distribution in concrete flange is suggested, and the calculation method of flexural stiffness and bending capacity of simply supported slim beams are proposed.

Fire Performance Analysis of SLIM AU Composite Beam (슬림 AU 합성보의 내화해석)

  • Kim, Myeong-Han;Oh, Myoung-Ho;Min, Jeong-Ki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam had been developed for not only reducing the story height in residential and commercial building, but also saving the cost of floor construction. The structural performance and economic feasibility was sufficiently approved by means of structural experiments and analytical studies. Even though fire resistance of the SLIM AU composite beam was evaluated throughout furnace fire test, the fire performance of the composite beam using finite element analysis is not analysed yet. Therefore the predictions of fire resistance simulations with loading as well as temperature distribution of the composite beam are summarized in this paper.