• Title/Summary/Keyword: sliding time

Search Result 819, Processing Time 0.038 seconds

Discrete-Time Sliding Mode Controller Design for Scanner system (Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

Time-Varying Sliding Mode Following Root Locus for Higher-Order Systems (고차 시스템을 위한 근궤적을 따르는 시변 슬라이딩 모드)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In this paper, we present a new time-varying sliding surface to achieve fast and robust tracking of higher-order uncertain systems. The surface passes through an initial error, and afterwards, it moves towards a predetermined target surface by means of a variable named by sliding surface gain and its intercept. Specifically, the sliding surface gain is determined so that its initial value can minimize a shifting distance of the surface and that the system roots in sliding mode can follow certain stable trajectories. The designed sliding mode control forces the system errors to stay always on the proposed surface from the beginning. By this means, the system remains insensitive to system uncertainties and disturbances for the whole time. To illustrate the effectiveness of the proposed method, the comparative study with conventional time-invariant sliding mode control is performed.

  • PDF

Design of Robot Controller using Time-Varying Sliding Surface (시변 슬라이딩 평면을 이용한 로봇 제어기의 설계)

  • Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.359-361
    • /
    • 1993
  • In this paper, a variable structure controller with time-varying sliding surface is proposed for robot manipulators. The proposed time-varying sliding surface ensures the existence of sliding mode from an initial state, while the contentional sliding surface cannot achieve the robust performance against parameter variations and disturbances before the sliding mode occurs. Therefore, error transient can be fully prescribed in advance for all time. Furthermore, it is shown that the overall system is globally exponetially stable. The efficiency of the proposed method for the trajectory tracking has been demonstrated by simulations.

  • PDF

An LMI Approach to Nonlinear Sliding Surface Design (비선형 슬라이딩 평면의 설계를 위한 LMI 접근법)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1197-1200
    • /
    • 2010
  • The problem of designing a nonlinear sliding surface for an uncertain system is considered. The proposed sliding surface comprises a linear time invariant term and an additional time varying nonlinear term. It is assumed that a linear sliding surface parameter matrix guaranteeing the asymptotic stability of the sliding mode dynamics is given. The linear sliding surface parameter matrix is used for the linear term of the proposed sliding surface. The additional nonlinear term is designed so that a Lyapunov function decreases more rapidly. By including the additional nonlinear term to the linear sliding surface parameter matrix we obtain a nonlinear sliding surface such that the speed of responses is improved. We also give a switching feedback control law inducing a stable sliding motion in finite time. Finally, we give an LMI-based design algorithm, together with a design example.

Design of Stable Time-varying Sliding Mode System

  • Kim, Ga-Gue;Ma, Jin-Suk;Lim, Chae-Deok;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.2-62
    • /
    • 2001
  • In this paper, we present a new time-varying sliding mode system that guarantees stable error convergence. The previous papers have dealt with stability of the time-varying sliding mode system by point-wisely investigating the stability of time-invariant system every time. However, it may be unstable even though it guarantees time-invariant stability every time, We designed the time-varying sliding surface so that the resultant time-varying system on sliding mode may be Stable. The initial sliding surface is obtained so that shifting distance of the surface may be minimized with respect to an initial error, and the intercept is produced so that the surface may pass the initial error.

  • PDF

Robust control using the sliding mode observer in the presence of unmatched uncertainties (비정합조건 하의 슬라이딩 모드 관측기를 이용한 강인 제어)

  • 한상철;박인규;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.334-334
    • /
    • 2000
  • In this paper, sliding mode observer design principles based on the equivalent control approach are discussed for the systems which may not satisfy the matching conditions. We propose a new approach for designing a sliding observer and the proof of the stability of the state reconstruction error system for time-invariant systems using the Lyapunov method. The reaching time to the sliding surface, the sliding dynamics of the system, the stability of the reconstruction error system via Lyapunov method, sufficient conditions for the existence of the sliding mode are studied.

  • PDF

Robust Vibration Control of Smart Structures via Discrete-Time Fuzzy-Sliding Modes (이산시간 퍼지-슬라이딩모드를 이용한 스마트구조물의 강건진동제어)

  • Choi, Seung-Bok;Kim, Myoung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3560-3572
    • /
    • 1996
  • This paper presents a new discrete-time fuzzy-sliding mode controller for robust vibration control of a smart structure featuring a piezofilm actuator. A governong equation of motion for the smart beam structure is derived and discrete-time codel with mismatched uncertainties such as parameter variations is constructed ina state space. A discrete-time sliding mode control system consisting of an equivalent controller and a discontinuous controller is formulated. In the design of the equivalent part, so called an equivalent controller separation method is adopted to achieve vzster convergence to a sliding surface without extension of a sliding region, in which the system robustness maynot be guaranteed. On the other hand, the discontinuous part is constructed on the basis of both the sliding and the convergence conditions using a time-varying feedback gain. The sliding moide controller is then incorporated with a fuzzy technique to appropriately determine principal control parameters such as a discountinuous feedback gain. Experimental implementation on the forced and random vibraiton controls is undertaken in order to demonstrate superior control performance of the proposed controller.

A position control of step motor with minimum time sliding surface (최단시간 슬라이딩 면에 의한 스텝모터의 위치제어)

  • You, Wan-Sik;Park, Hyung-Nam;Kim, Yeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.99-104
    • /
    • 1995
  • For the robust control, sliding mode control has gained a great attention. Sliding mode control has the good robustness, because it makes the state of system reach the origin of the state space, by a varying the structure of system on the sliding surface. The slope of sliding surface affects to the control performance. If it is small, robustness is increased at the expense of reaching time. On the contrary, if it is large, reaching time is decreased at the expense of robustness and overshoot. In this paper, to design the optimal sliding surface, optimal control theory is introduced. To confirm the validity of the proposed method, the position control of step motor is implemented.

  • PDF

Discrete-Time Sliding Mode Controller for Linear Time-Varying Systems with Disturbances

  • Park, Kang-Bak
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-247
    • /
    • 2000
  • In this paper, a discrete-time sliding mode controller for linear time-varying systems with disturbances is proposed. The proposed method guarantees the systems state is globally uniformly ultimately bounded(G.U.U.B) under the existence of time-varying disturbances.

  • PDF

Robust Decentralized Stabilization of Large-Scale Time-Delayed Linear Systems with Uncertainties via Sliding Mode Control (슬라이딩 모드 제어에 의한 불확정성을 가진 대규모 시간지연 선형 계통의 강인 분산 안정화)

  • 박장환;유정웅
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 1999
  • The present paper is concerned with the robust decentralized stabilization problem of large-scale systems with time delays in the interconnections using sliding mode control. Based on Lyapunov stability theorem and H$_{\infty}$ theory, an existence condition of the sliding mode and a robust decentralized sliding mode controller are newly derived for large-scale systems under mismatched uncertainties. Finally, a numerical example is given to verify the validity of the results developed in this paper.

  • PDF