• Title/Summary/Keyword: sliding test

Search Result 659, Processing Time 0.03 seconds

Development and Feasible Study of Train to Pedestrian Protection Airbag (철도차량 접촉사고자 보호 에어백 개발연구)

  • Yoo, Wan-Dong;Ham, Joung-Sik;Cho, Kyue-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.82-91
    • /
    • 2012
  • This paper deals with the development and feasible study of the train to pedestrian protection airbag. The concept of the airbag system is to protect the pedestrian like as workers on railroad. The airbag system includes cushions, gas generators, a housing, sliding fixture, anti-bouncing airbag, and a leg protection bumper. Those things were designed and fabricated. The performance of the airbag system was evaluated in the sense of the static deployment test, drop test, dynamic motion test and field(train level) test. The deployment logic, TTF(Time to fire), and the inner pressure of the cushion were also investigated for the airbag.

Field test of longitudinal force transmitter in high speed railway bridge (경부고속철도 교량 수평력분산장치 성능시험)

  • Choi Il-Yoon;Lee Jun S.;Lee Hee-Up;Yim Myoung-Jae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1180-1187
    • /
    • 2004
  • Relative displacements between decks should be within the allowable limit under horizontal forces in high-speed railway bridges. Longitudinal force transmitters(LFT) have been introduced ih high-speed railway bridges for test track. The horizontal forces on the pier supporting the fixed bearing are transmitted to the near piers supporting the sliding bearings by LFT, The performance of LFT was investigated by field test in which the braking and acceleration tests using KTX were conducted in Baebang viaduct. The relative displacements between decks were measured infield test and were compared with the numerical results and the allowable limit.

  • PDF

Reinforcement for Bearing Capacity of PRD Steel Pile at Mudstone Area (이암지역에 근입된 PRD강관말뚝의 지지력 보강)

  • Kong, Jin-Young;Kang, Hee-Jin;Chun, Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1760-1769
    • /
    • 2007
  • The cut slope sliding which has been frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The case study in this paper shows that mudstone which had enough strength in a boring stage has lost the strength after installing PRD steel pipe pile inducing an insufficient bearing capacity, which has been ascertained by the static load test. Test construction has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. From the test construction, MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, which has been confirmed by the static load test.

  • PDF

High Temperature Wear Behavior of Inconel 690 Steam Generator tube (인코벨 690 증기발생기 세관의 고온 마모 거동)

  • 홍진기;김인섭;김형남;장기상
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.59-62
    • /
    • 2001
  • Flow induced vibration in steam generators has caused dynamic interactions between tubes and contacting materials resulting in fretting wear . Series of experiments have been performed to examine the wear properties of Inconel 690 steam generator tubes in various environmental conditions. For the present study, the test rig was designed to examine the fretting wear and rolling wear properties in high temperature(room temperature - 290。C) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of the steam generator tube materials. To investigate the wear mechanism of material, the worn was observed using scanning electron microscopy. The weight loss increase at higher test temperature was caused by the decrease of water viscosity and the mechanical property change of tube material. The mechanical property changes of steam generator tube material, such as decrease of hardness or yield stress in the high temperature tests. From the SEM observation of worn surfaces, the severe wear scars were observed in specimens tested at the higher temperature.

  • PDF

Tribological Characteristics of Phosphorated Starch Based Electrorheological Fluid (인산화 전분 ER 유체의 트라이볼로지 특성)

  • Jang, Min-Gyu;Lee, Chul-Hee;Choi, Jea-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • This experimental study presents tribological characteristics under boundary lubrication contacts associated with electrorheolocal (ER) fluid. ER fluid is prepared by using phosphorated starch particles and silicone oil. Experimental apparatus of tribological tester is designed and constructed to evaluate tribological characteristics of pin specimens. Wear tests under boundary lubrication of ER fluid are experimentally performed under consideration of several operational factors such as normal load, sliding distance, sliding speed and specimen materials: steel, copper and aluminum. After wear test, microscopic surface changes of the worn pin specimens are analyzed in order to investigate measured wear characteristics by using the scanning electron microscope (SEM) as well as surface profilometer. In addition, the chemical wear characteristics are investigated by using energy dispersive x-ray spectroscopy (EDS). Moreover, friction coefficient measurements under different materials of pin specimens are conducted for the tribological investigations. In order to verify the effect of starch phosphate particles in ER fluid, the wear test results with ER fluid are compared with test results with only silicone oil. The results clearly present that the phosphorated starch based ER fluid shows the stabilized wear as well as friction characteristics after run-in operations, but the wear rate under ER fluid is increased.

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF

3D Finite Element Analysis of High Tension Bolted Joints (고장력 볼트 이음부의 3차원 유한요소 해석)

  • Shim, Jae Soo;Kim, Chun Ho;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.407-414
    • /
    • 2004
  • Bridges in common use are expected to have more varieties of load in their connected members and bolts than in construction. Faults in connection members or bolts occur so often according to the time flow. One of the purposes of this study is to find out the behavior and structural features of high-tension bolted joints with faults that are very difficult and cost much to find out through experimentation with finite element analysis. Another purpose of this study is to provide sufficient data, estimated experimental results, and the scheme of the test plate for an economical experimental study in the future. Surveys of bridges with a variety of faults and statistical classifications of their faults were performed, as was a finite element analysis of the internal stress and the sliding behavior of standard and defective bridge models. The finite element analysis of the internal stress was performed according to the interval of the bolt, the thickness of the plate, the distance of the edge, the diameter of the bolt, and the expansion of the construction. Furthermore, the analysis explained the sliding behavior of high-tension bolt joints and showed the geometric non-linear against the large deformation, and the boundary non-linear against the non-linear in the contact surface, including the material non-linear, to best explain the exceeding of the yield stress by sliding. A normally bolted high-tension bolt joint and deduction of bolt tension were also analyzed with the finite element analysis of bridge-sliding behavior.

Evaluation System of River Levee Safety Map for Improving River Levee Maintenance Technology (하천제방 유지관리 기술의 고도화를 위한 하천제방 안전도맵 평가체계 제안)

  • Kim, Jin-Man;Moon, In-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.768-777
    • /
    • 2017
  • The efforts to improve river levee maintenance technologies have accelerated globally in a bid to deal with the flood damage resulting from the changes to the climate and flood events. This paper, in line with such tendency, proposes an evaluation system of a river levee safety map to maintain the river levee in an efficient manner. The concept of a river levee safety map is aimed at maximizing the maintenance efficiency for a manager to indicate the safety index, including the current river levee sliding, piping, and visual inspection on a GIS map. To develop such an evaluation system, a safety index covering the sliding, piping, and visual inspection are designated through the data and document examination and the rational guideline to classify each index into three grades, A, B, and C, is proposed. Based on the guideline proposed, the sliding and piping characteristics in terms of safety depending on the change to the flood water level duration time at the test section (Nam river) were evaluated by numerical analysis. As a result, both the protected landside and riverside satisfied the requirements for Grade A in terms of sliding, and when it comes to piping, the grade declined to C because the flood water level duration time increased at R2. As a planning study to propose a river levee safety map evaluation system, a further advanced study, standardization of the river levee data, and improvement of the existing system and laws are required.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

A study on Sliding Friction and Wear Characteristics of Hybrid Composites at Medium Sliding Speed (중속에서의 하이브리드 복합재료의 미끄럼 마찰 및 마모 특성에 관한 연구)

  • 정형범;윤재륜
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.78-88
    • /
    • 2000
  • Tribological properties of fiber composite materials were measured and wear resistant hybrid structure was proposed based upon the understanding of tribological behavior of the composite materials. Unidirectional composites with glass fibers, carbon fibers, and aramid fibers were tested for tribological properties in order to propose a wear resistant hybrid structure. Hybrid composites which contain carbon and aramid fibers were prepared, the specimens were sliced by a water-jet cutter, and friction and wear properties were measured. An experimental set-up was designed and built for the friction and wear test of the composite specimens. Unidirectional fiber composite and hybrid composite specimens were tested to evaluated the tribological behavior for biomimetic applications. It is observed that the friction and wear behavior of fiber composites depends upon fiber orientation, sliding speed, and type of reinforcing fibers.

  • PDF