• 제목/요약/키워드: sliding surface

검색결과 1,092건 처리시간 0.024초

정합조건을 만족하지 않는 선형 시스템에 대한 슬라이딩 모드 제어 (Sliding Mode Control for Linear System with Mismatched Uncertainties)

  • 성재봉;권성하;박승규;정은태
    • 제어로봇시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a design method of sliding model control (SMC) for single input linear systems with mismatched uncertainties. We define a virtual state based on the controllable canonical form of the nominal system. And we defined a sliding surface for the augmented system with a virtual state. This sliding surface makes it possible to use the SMC technique with various types of controllers. In this paper, we construct a controller that combines SMC with robust controller. We design a robust controller for the system with mismatched uncertainties using a form of linear matrix inequality(LMI). We make a virtual state from this robust control input and the states of the nominal system. And we design a sliding model controller that stabilizes the overall closed-loop system.

  • PDF

확장된 터미널 슬라이딩 모드 제어기의 설계 (Design of Extended Terminal Sliding Mode Control Systems)

  • 조영훈;이용화;박강박
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.236-240
    • /
    • 2011
  • The terminal sliding mode control schemes have been studied a lot since they can guarantee that the state error gets to zero in a finite time. However, the conventional terminal sliding surfaces have been designed using power function whose exponent is a rational number between 0 and 1, and whose numerator and denominator should be odd integers. It is clearly restrictive. Thus, in this paper, we propose a novel terminal sliding surface using power function whose exponent can be a real number between 0 and 1.

이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석 (Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis)

  • 김동식;서호준;서삼준;박귀태
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF

새로운 모델 추종 슬라이딩 모드 제어기 (Novel Model Following Sliding Mode Controller with Virtual State)

  • 박승규;옥인조;안호균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2669-2671
    • /
    • 2000
  • In this paper, a new model error following sliding mode control is considered with a novel sliding surface for the error. This novel sliding surface has nominal dynamics of an original state of the error system and makes it possible that the Sliding Mode Control(SMC) technique for the error of the model following is used with the various types of controllers. Its design is based on the augmented system whose dynamics have a higher order than that of the original error system. The reaching phase is removed by using an initial virtual state which makes the initial error state sliding function equal to zero.

  • PDF

시일과 스틸면 사이에 구형 입자가 있는 미끄럼 접촉 해석 (Sliding Contact Analysis between Rubber Seal, a Spherical Particle and Steel Surface)

  • 박태조;이준혁
    • Tribology and Lubricants
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, a three elastic body sliding contact problem is modeled to investigate more precise wear mechanisms related with the sealing surface. A 3-D finite element contact model, a small spherical elastic particle, PTFE seal and steel surface, is solved using a nonlinear finite element code MARC. The deformed seal and steel surface shapes, von-Mises and principal stress distributions are obtained for different seal sliding distances. The entrapped small particle within PTFE seal results in very high stresses on the steel surface which exceeded its yield strength and produce plastic deformation such as groove and torus. The sealing surface could also be worn down by sub-surface fatigue due to intervening small particles together with the well-known abrasive wear. Therefore the proposed contact model adopted in this paper can be applied in design of various sealing systems, and further studies are required.

상용 Gentoo 폴리머가 경화된 고체주입표면에서 물방울 거동 (Water droplet behavior on a solid-infused surface cured with commercial Gentoo polymer)

  • 김형원;김정현
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.61-67
    • /
    • 2024
  • In this study, the behavior of water droplets on a solid-infused surface was evaluated by quantifying a water droplet's contact angle, sliding angle, and terminal velocity. The contact angle hysteresis and sliding angle of water on the solid-infused surface were measured to be lower than those of the hydrophobic PTFE surface. It led to the enhancement of the initiation of the water droplet's movement. When the capillary number was lower than Ca < 0.004, the terminal velocity of the water droplet on the solid-infused surface was higher than the PTFE surface due to the low contact line resistance. However, the transition of the droplet morphology from a hemispherical shape to a streamlined teardrop shape beyond Ca > 0.004 lost the effect of reducing frictional resistance on the solid-infused surface.

반응 표면법을 이용한 이륜자동차 브레이크 디스크 마멸량에 관한 연구 (A Study on Wear loss of Motorcycle Brake Disk by Response Surface Method)

  • 전환영
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.44-49
    • /
    • 2008
  • In this research, I would like to choose sliding distance and ventilated hole number which affect to the amount of wear of disk and pad as experiment conditions of 'the amount of wear' through wear test of motorcycle brake disk. Also, I analyze the amount of wear according to the variation of coefficient of friction by using design of experiment that is being widely used in diverse areas. With the tests of least, I present the correlation of each experiment condition. Therefore, I analyzed the variation of the amount of wear of disk and pad according to test factors such as ventilated hole number, applied load, sliding speed, and sliding distance in wear test of motorcycle brake disk by applying the design of experiment. Also, I analyzed quantitatively the influence of test factors through Taguchi Robust experimental design, response surface and examined the most suitable level and estimation of the amount of wear of disk. From these, I reached the following conclusions. response surface design, mathematical model was constructed about amount of wear of disk and pad. The amount of wear that decrease according to increase of ventilated hole number, and it's increase according to Increase of applied load, sliding speed, and sliding distance.

  • PDF

비선형 스위칭 평면을 이용한 슬라이딩모드 제어기 설계 (The Design of Sliding Mode Controller with Nonlinear Sliding Surfaces)

  • 조현섭
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3622-3625
    • /
    • 2009
  • 본 논문은 고정 슬라이딩면을 갖는 가변 구조 제어기의 단점인 도달영역에서의 파리미터의 불확실성과 외부 외란에 대한 민감성을 감소시키는 방안으로 고정 슬라이딩면 대신 비선형 슬라이딩면을 제시한다. 비선형 슬라이딩면을 통하여 시스템 상태 궤적이 초기 위치에서부터 평형점에 이르기까지 외란과 파라미터의 불확실성에 강인하게 되며 아울러 고정 슬라이딩면까지의 도달시간 뿐만 아니라 평형점까지의 도달시간도 감소하게 되는 특성을 보이고자한다. 제안된 제어 구조의 효과는 시뮬레이션을 통해 증명하였다.

두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸 (Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸 (Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions)

  • 이권용;김석영;김신윤
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF