• Title/Summary/Keyword: sliding structure

Search Result 648, Processing Time 0.025 seconds

Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control

  • Kim, Byeongil;Washington, Gregory N.;Yoon, Hwan-Sik
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.623-635
    • /
    • 2013
  • This paper investigates application of a control algorithm called model predictive sliding mode control (MPSMC) to active vibration suppression of a cantilevered aluminum beam. MPSMC is a relatively new control algorithm where model predictive control is employed to enhance sliding mode control by enforcing the system to reach the sliding surface in an optimal manner. In previous studies, it was shown that MPSMC can be applied to reduce hysteretic effects of piezoelectric actuators in dynamic displacement tracking applications. In the current study, a cantilevered beam with unknown mass distribution is selected as an experimental test bed in order to verify the robustness of MPSMC in active vibration control applications. Experimental results show that MPSMC can reduce vibration of an aluminum cantilevered beam at least by 29% regardless of modified mass distribution.

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.

Terminal sliding mode control of robot manipulators for PTP task

  • Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.267-270
    • /
    • 1995
  • In this paper, a variable structure control scheme with a terminal sliding mode is proposed for robot manipulators. The proposed control scheme guarantees that the output tracking error converges to zero in finite time, and the overall system shows robust property against parametric uncertainties and external disturbances all the time.

  • PDF

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

Nonlinear Earthquake Response Analysis of 2-D Underground Structures with Soil-Structure Interaction Including Separation and Sliding at Interface (지반-구조물 상호작용계의 경계면에서 미끄러짐과 분리현상을 고려한 이차원 지하구조물의 비선형 지진응답해석)

  • 최준성;이종세;김재민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.174-181
    • /
    • 2002
  • The paper presents an effective analytical method for SSI systems which can have separation or sliding at the soil-structure interface. The method is based on a hybrid approach which combines a linear SSI code KIESSI-2D in frequency domain with a commercial finite element package ANSYS to obtain nonlinear dynamic responses in time domain. The method is applied to a 2-D underground box structure which experiences separation and sliding at the soil-structure interface. Material nonlinearity of the concrete structure is also included in the analysis. Effects of the interface conditions are examined and some critical factors affecting the seismic performance of underground structures are identified.

  • PDF

A Sliding Mode Control for an Engine Mount Using Magneto-Rheological Fluid (MR유체를 이용한 엔진마운트의 슬라이딩모드제어)

  • 이동길;안영공;정석권;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this paper, a sliding mode controller of a fluid engine mount using MR (Magneto-Rheological) fluid was discussed When the MR fluid is applied to a fluid mount, resistance of MR fluid can be controlled by electro-magnetic valve installed in the inertia track. Since the rheological property of the MR fluid shows a function of shear rate, the damping characteristics of the mount will be change according to the frequency. Changing an applied magnetic field to the valve changes the property of the mount, such as the resistance of the MR fluid, the notch and the resonant frequencies due to the fluid passing, quantity of the fluid passing, the effective piston area of the volumetric damping and stiffness. Therefore, the fluid mount using MR fluid can be regarded as a variable structure system The sliding mode control known well as a particular type of variable structure control was introduced in this study. The sliding mode control, which has inherent robustness, is also expected to improve the control performance in the engine mount The sliding mode controller for the mount formatted by taking into account the response property with a time constant to MR fluid and the variable mount property. The motion equations of the fluid mount are derived from Newton's law of motion and used in numerical simulation. Numerical simulations illustrate the effectiveness of the sliding mode controller.

  • PDF

A Continuous Sliding Surface Transformed VSS by Saturation Function for MIMO Uncertain Linear Plants (다입출력 불확실 선형 플랜트를 위한 포화함수에 의한 연속 슬라이딩 면 변환 가변구조시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.127-134
    • /
    • 2015
  • In this note, a continuous sliding surface transformed variable structure systems by the saturation function is presented for MIMO uncertain linear plants. A discontinuous sliding surface transformed VSS is proposed theoretically. The closed loop exponential stability together with the MIMO existence condition of the sliding mode on the predetermined sliding surface is investigated. For practical applications, a continuous approximation of the discontinuous VSS is made by means of the saturation function. The discontinuity of the control input as the inherent property of the VSS is much improved in view of the practical aspects. Through a design example and simulation studies, the usefulness of the proposed continuous transformed VSS controller is verified.

A study on the servo system controller design of variable structure systems with new switching surface (새로운 스위칭 평면을 가지는 가변구조 서보 제어기 설계에 관한 연구)

  • 문용기;이정훈;이대식;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.308-312
    • /
    • 1990
  • In this paper, we propose a simple method to control the servo system with sliding mode in the parameter variation and disturbances. We show the comparison between the conventional sliding line and the new sliding line and the proposed sliding mode control. The performance of the fast response and no overshoot by using the proposed sliding line is obtained.

  • PDF

A Comparison of Sliding Mode and Integral Sliding Mode Controls for Robot Manipulators (로봇 매니퓰레이터를 위한 슬라이딩 모드와 적분 슬라이딩 모드 제어의 비교)

  • Yoo, Dong-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.168-172
    • /
    • 2009
  • We compare an integral sliding mode control with a typical sliding mode control for robot manipulators through two primitive tasks: set-point regulation and trajectory tracking control. To prove the asymptotic stability of two methods for robot manipulators, we introduce three important properties in the robot dynamics: skew-symmetry, positive-definiteness, and boundedness of robot parameter matrices and we present one unified control structure using a parametric velocity vector. From illustrative examples, we show that two methods effectively control for robot manipulators.

ANALYSIS OF SLIDING MOTION OF PILED MULTI-BLOCK SYSTEMS CONSIDERING HORIZONTAL ROTATION (적층 강체블록의 수직축 회전을 고려한 Sliding운동 해석과 실험)

  • 황인섭;김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.193-199
    • /
    • 2003
  • The most cultural heritages are composed of piled multi-block systems which are vulnerable to earthquakes. The stone of low height tends to slide when the excitation such as earthquake is applied and this sliding motion has effects on the whole response of the structure. In this study, analytical method of sliding motion of the piled multi-block systems considering horizontal rotation is developed and compared with shaking table test results. It is shown that the nonlinear analysis of sliding motion of multi-block system leads to satisfactory results.

  • PDF