• Title/Summary/Keyword: sliding energy

Search Result 279, Processing Time 0.03 seconds

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

A Study for the Screen Door System Driving Stiffness of Motor Control Method (모터 제어 방식의 스크린 도어 시스템 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2385-2390
    • /
    • 2015
  • In the beginning run, urban railway had been required as transportation. But now days urban railway have stayed in the platform for long time, the platform is faced the problem that is improvement of environment as one of the living space. Thus, sliding automatic door on the basis of screen door have used in huge distribution market, hospital, restaurant and public office because it is comfortable that customer's convenience and entrance are controled. So screen door not only requires customer's convenience and safe, clean area and energy conservation but demands optimal design technology development of screen door system that is confirmed by element parts of design and confidence. In this paper, For secure confidence of screen door, after as modeling roller and frame's system, confirming the result for qualification of driving stiffness. And then it suggests that it is possible to increase performance and declines fraction defective of element's part.

A dynamic analysis on minute particles' detachment mechanism in a cryogenic $CO_2$ cleaning process (극저온 $CO_2$ 세정과정 시 미세오염물의 탈착 메커니즘 연구)

  • Seok, Jong-Won;Lee, Seong-Hoon;Kim, Pil-Kee;Lee, Ju-Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.29-33
    • /
    • 2008
  • Rapid increase of integrity for recent semiconductor industry highly demands the development of removal technology of contaminated particles in the scale of a few microns or even smaller. It is known that the surface cleaning technology using $CO_2$ snow has its own merits of high efficiency. However, the detailed removal mechanism of particles using this technology is not yet fully understood due to the lack of sophisticated research endeavors. The detachment mechanism of particles from the substrates is known to be belonged in four types; rebounding, sliding, rolling and lifting. In this study, a modeling effort is performed to explain the detachment mechanism of a contaminant particle due to the rebounding caused by the vertical collision of the $CO_2$ snow. The Hertz and Johnson-Kendall-Roberts(JKR) theories are employed to describe the contact, adhesion and deformation mechanisms of the particles on a substrate. Numerical simulations are followed for several representative cases, which provide the perspective views on the dynamic characteristics of the particles as functions of the material properties and the initial inter-particle collision velocity.

  • PDF

Real-time FCWS implementation using CPU-FPGA architecture (CPU-FPGA 구조를 이용한 실시간 FCWS 구현)

  • Han, Sungwoo;Jeong, Yongjin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • Advanced Driver Assistance Systems(ADAS), such as Front Collision Warning System (FCWS) are currently being developed. FCWS require high processing speed because it must operate in real time while driving. In addition, a low-power system is required to operate in an automobile embedded system. In this paper, FCWS is implemented in CPU-FPGA architecture in embedded system to enable real-time processing. The lane detection enabled the use of the Inverse Transform Perspective (IPM) and sliding window methods to operate at fast speed. To detect the vehicle, a Convolutional Neural Network (CNN) with high recognition rate and accelerated by parallel processing in FPGA is used. The proposed architecture was verified using Intel FPGA Cyclone V SoC(System on Chip) with ARM-Core A9 which operates in low power and on-board FPGA. The performance of FCWS in HD resolution is 44FPS, which is real time, and energy efficiency is about 3.33 times higher than that of high performance PC enviroment.

A Study on the Variable Structure Adaptive Control Systems for a Nuclear Reactor (가변구조 적응제어이론에 의한 원자로부하추종 출력제어에 관한 연구)

  • Sung Ha Kwon;Hee Young Chun;Hyun Kook Shin
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.247-255
    • /
    • 1985
  • This paper describes a new method for the design of variable structure model-following control systems(VSMFC). This design concept is developed using the theory of variable structure systems (VSS) and slide mode. The new results are presented on the sliding control methodology to achieve accurate tracking for a class of nonlinear, multi-input multi-output(MIMO), time varying systems in the presence of parameter variations. The design requires little computational effort. The dynamic response is insensitive to parameter variations. The feasibility and the advantages of the method are illustrated by applying it to a 1000 MWe boiling water reactor(BWR). The control is studied in the range of 85%∼90% of rated power for load-following control. A set of 12 nonlinear differential equations is used to simulate the total plant. A 6-th order linear model has been developed from these equations at 85% of rated power. The obtained controller is shown by simulations to be able to compensate for a plant parameter variation over a wide power range.

  • PDF

Fracture Properties of High Strength Concrete Disk with Center-Crack (중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성)

  • 진치섭;김희성;박현재;김민철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2001
  • It is difficult to obtain accurate fracture toughness values using three point bending test(TPB) proposed by RILEM committees because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, fracture toughness is easily obtained from crack initiation load in the disk test. In this paper, the fracture properties of high strength concrete disks with center-crack was investigated. For this purpose, the experimental results were compared with the results by finite element analysis(FEA). And the experimental fracture locus was compared with theoretical fracture locus. Also, the results of fracture properties for the degree of concrete strength are presented. It is concluded from this study that results from FEA with maximum stress theory were compared well with the results from experiment. And the degree of concrete strength was contributed to the crack initiation load and fracture toughness, but was not contributed to the failure angle. Also, The discrepancy of fracture locus between the maximum stress theory and the experiment for concrete is considered to depend upon a large energy requirement for inducing the mixed-mode and sliding mode fractures.

Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains (철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성)

  • Yang, Yong Joon;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

Mushroom skeleton to create rocking motion in low-rise steel buildings to improve their seismic performance

  • Mahdavi, Vahid;Hosseini, Mahmood;Gharighoran, Alireza
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.639-654
    • /
    • 2018
  • Rocking motion have been used for achieving the 'resilient buildings' against earthquakes in recent studies. Low-rise buildings, unlike the tall ones, because of their small aspect ratio tend to slide rather than move in rocking mode. However, since rocking is more effective in seismic response reduction than sliding, it is desired to create rocking motion in low-rise buildings too. One way for this purpose is making the building's structure rock on its internal bay(s) by reducing the number of bays at the lower part of the building's skeleton, giving it a mushroom form. In this study 'mushroom skeleton' has been used for creating multi-story rocking regular steel buildings with square plan to rock on its one-by-one bay central lowest story. To show if this idea is effective, a set of mushroom buildings have been considered, and their seismic responses have been compared with those of their conventional counterparts, designed based on a conventional code. Also, a set of similar buildings with skeleton stronger than code requirement, to have immediate occupancy (IO) performance level, have been considered for comparison. Seismic responses, obtained by nonlinear time history analyses, using scaled three-dimensional accelerograms of selected earthquakes, show that by using appropriate 'mushroom skeleton' the seismic performance of buildings is upgraded to mostly IO level, while all of the conventional buildings experience collapse prevention (CP) level or beyond. The strong-skeleton buildings mostly present IO performance level as well, however, their base shear and absolute acceleration responses are much higher than the mushroom buildings.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Development and CFD Analysis of a New Type Pre-Swirl Duct for 176k Bulk Carrier (176k Bulk Carrier에 대한 신개념 타입의 Pre-Swirl Duct의 개발 및 CFD 해석)

  • Yoo, Gwang Yeol;Kim, Moon Chan;Shin, Yong Jin;Shin, Irok;Kim, Hyun Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.373-382
    • /
    • 2019
  • This paper shows numerical results for the estimation of the propulsor efficiency of Pre-Swirl Duct for 176k bulk carrier as well as its design method. Reynolds averaged Navier-Stokes equations have been solved and the k-epsilon model applied for the turbulent closure. The propeller rotating motion is determined using a sliding mesh technique. The design process is divided into each part of Pre-Swirl Duct, duct and Pre-Swirl Stator. The design of duct was performed first because it is located further upstream than Pre-Swirl Stator. The distribution of velocity through the duct was analyzed and applied for the design of Pre-Swirl Stator. The design variables of duct include duct angle, diameter, and chord length. Diameter, chord length, equivalent angle are considered when designing the Pre-Swirl Stator. Furthermore, a variable pitch angle stator is applied for the final model of Pre-Swirl Duct. The largest reduction rate of the delivered power in model scale is 7.6%. Streamlines, axial and tangential velocities under the condition that the Pre-Swirl Duct is installed were reviewed to verify its performance.