• Title/Summary/Keyword: slab Method

Search Result 1,077, Processing Time 0.022 seconds

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web

Average Correction for Compensation of Differential Column Shortening in High-rise Buildings (이동 평균법을 이용한 고층 건물의 부등축소량 보정 기법)

  • Park, Sung-Woo;Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • The vertical members of structures are shortened as time goes on. Because structures have been high-rising and atypical there should be different axial loads among vertical members and it causes differential column shortenings. The differential column shortening add stresses to connections, make slab tilt, and damage to non-structural components. To reduce these influences compensation is need. The rational compensation means the exact expectation of amounts of column shortenings and the reasonable corrections. The expectation of column shortenings are more exact as researched, however, there is little research about the compensation. This paper presents the average correction method and the constraints for differential column shortenings considering errors due to the construction precision. The relations between constraints and the number of correction groups give an objective criterion for decision of constraints.

Development of Construction Method and Design Guide for Newly Constructed Precast Concrete Pavements (신설 프리캐스트 콘크리트 포장 시공방법 및 설계지침 개발)

  • Kim, Seong-Min;Park, Hee-Beom;Yang, Sung-Chul;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.193-203
    • /
    • 2008
  • This study was conducted to investigate the feasibility of the expedite construction of new pavement systems using precast concrete slabs and to develop the design and construction guide based on the results of the experimental construction. Half scale concrete slabs were designed and fabricated and the optimal reinforcement design, linkages between the slabs in the longitudinal and transverse directions, and the grouting methods were investigated. The experimental construction was performed fast and easily by assembling two slabs in the longitudinal direction and the other two in the transverse direction. The slabs were leveled and the pockets and the space between the slab bottom and the underlying layer were grouted. From the experimental construction, details about the design and construction of the precast pavements were acquired. Finally, the design and construction guide for the newly constructed precast concrete pavement systems was developed.

  • PDF

An Experimental Study of Shear Capacity for One-way Concrete Slabs Reinforced with Amorphous Micro Steel Fibers (비정질 강섬유 보강 일방향 콘크리트 슬래브의 전단성능에 대한 실험적 연구)

  • Kim, Seon-Du;Choi, Kyoung-Kyu;Choi, Oan-Chul;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • In this study, one-way shear tests were performed to investigate the shear capacity of amorphous steel fiber-reinforced concrete slabs. Primary test parameters were the shear reinforcing method(Stirrups or amorphous steel fibers) and shear reinforcement ratio(0.25 and 0.5%). A series of four one-way slab specimens including a specimen without shear reinforcement and three specimens with shear reinforcements(stirrup, 0.25%, and 0.5% amorphous steel fibers) were tested. The test results showed that 0.25% amorphous steel fibers improved the shear capacity, but 0.5% amorphous steel fibers did not improve the shear capacity compared to the specimen with conventional shear reinforcement of 0.25%. Additional study is needed to understand the variation of shear capacity according to fiber volume fraction.

Comparison of Impact Sound Insulation Performances of Apartment Floors Against Heavy-weight Impact Sources via Field Measurement Data (공동주택 현장 측정자료를 활용한 중량충격원의 바닥충격음 차단성능 비교)

  • Yun, Chang-Yeon;Yeon, Jun-Oh;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.651-658
    • /
    • 2014
  • Notification 2013-611 of MOLIT has come into effect. It relates primarily to new standard impact source. In this study, an in-depth experimental analysis of the difference between a bang machine and an impact ball was performed via field testing of shear wall and flat plate structure at 51 sites. This paper focuses on the difference in single number quantities between a bang machine and an impact ball. At wall thicknesses of 180 and 210 mm in shear wall structure, the single number quantities exhibited differences of 3.1 and 4.5 dB, respectively, and at thicknesses exceeding 250 mm in flat plate structure, the difference was constant at 4.6 dB. With regard to flat plate structures, the single-index difference increased up to 11 dB as the thickness of the floor slab increased. In general, the highest level of contribution for the bang machine was 63 Hz, irrespective of thickness determining bandwidth. The highest level for the impact ball were 63 Hz and 125 Hz. In future research, when reviewing additional field performance measurement data, it will be necessary to consider a detailed examination instead of the current method of uniformly adding 3 dB for all thicknesses and types of structures.

A Study on the Curvature Characteristic of the Incomplete Composite Girder Considering the Deflection Effect (처짐을 고려한 불완전합성형의 곡률특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Yun Hwan;Park, Yong Chan;Song, Su Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • Current composite steel and concrete bridges are designed using full-interaction theory assuming there is no relative slip, between the steel and concrete components along their interface, because of the complexities of partial-interaction analysis techniques. However, in the assessment of existing composite bridges this simplification may not be warranted as it is often necesary to extract the correct capacity and endurance from the structure. This may only be achieved using partial-interaction theory which tuly reflects the behaviour of the structure. In this paper, Parametric analyses have been carried out in order to confirm the partial-interaction curvatures with deflection effect using the finite element method. Therefore, the model is considered for simply supported steel and concrete composite bridges with a uniform distribution of connectors subjected to a single concentrated load. For the case studies, this study applicate a parameters such as the number and space of stud shear connector and elastic modulus of concrete slabs. From this study, it is known that partial-interaction effect was in the increase to the increasing the deflection of composite bridges, and stiffness and strength of slab concrete considering the occurrence of crack effect seriously to the partial-interaction behavior.

Elasto-Plastic Behaviors of Composite Beam using Shear Connectors installed in Driving Pins (드라이빙핀전용 전단연결재를 이용한 합성보의 탄소성 거동)

  • Yang, Il-Seung;Oh, Young-Ho;Lee, Man-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • The adoption of a composite beam system is regarded as a simple but effective solution because it improves the overall stiffness, strength and stability of the structure by welding shear studs. However, welding shear studs poses problems including electric shock and weld defects. Mechanical methods have emerged as an alternative to metallurgical methods for connecting the H-beam and shear connector. Four specimens were tested in order to compare the structural behavior of the proposed composite beams with that of the classical composite beam given the condition of horizontal loading. With the original composite beam (FCB-SB specimen) using stud bolts, hysteresis loops are stable, but its strength decreased with the crashing of the concrete slab around the column. The suggested composite beams using shear connectors also yielded stable hysteresis loops. Consequently, use of the suggested composite beams instead of the original composite beam are recommended.

Estimation of Air Voids of Asphalt Concrete Using Non-destructive Density Testing (비파괴 밀도시험을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Na, Il-ho;Lee, Sung-Jin;Yoon, Ji-Hyeon;Kim, Kwang-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.111-119
    • /
    • 2018
  • The air-void is known to be one of the influencing factors for estimating long-term performance of asphalt concrete. Most of all, confirming air void or density of pavement layer is important for quality control of field compaction level of asphalt concrete pavement. In this study, a non-nuclear type non-destructive density gage (NDDG) was used to estimate compacted air-voids of asphalt pavement as a non-destructive test method. Asphalt concrete slab specimens were prepared using 6 types of asphalt mixes in laboratory (lab) for lab NDDG test. Four different base structure materials were used to find out if there were any differences due to the type of base structure materials. The actual air-voids and NDDG air-voids were measured from 6 asphalt concrete slabs. Four sections of field asphalt pavements were tested using the NDDG, and actual air voids were also measured from field cores taken from the site where the NDDG air-void was measured. From lab and field experimental tests, it was found that the air-voids obtained by NDDG were not the same as the actual air-voids measured from the asphalt concrete specimen. However, it was possible to estimate air voids based on the relationship obtained from regression analysis between actual and NDDG air voids. The predicted air-voids based on the NDDG air-voids obtained from 50mm depth were found to be reliable levels with $R^2{\fallingdotseq}0.9$. Therefore, it was concluded that the air-voids obtained from NDDG could be used to estimate actual air-voids in the field asphalt pavement with a relatively high coefficient of determination.

Non linear soil structure interaction of space frame-pile foundation-soil system

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The study deals with physical modeling of space frame-pile foundation and soil system using finite element models. The superstructure frame is analyzed using complete three-dimensional finite element method where the component of the frame such as slab, beam and columns are descretized using 20 node isoparametric continuum elements. Initially, the frame is analyzed assuming the fixed column bases. Later the pile foundation is worked out separately wherein the simplified models of finite elements such as beam and plate element are used for pile and pile cap, respectively. The non-linear behaviour of soil mass is incorporated by idealizing the soil as non-linear springs using p-y curve along the lines similar to that by Georgiadis et al. (1992). For analysis of pile foundation, the non-linearity of soil via p-y curve approach is incorporated using the incremental approach. The interaction analysis is conducted for the parametric study. The non-linearity of soil is further incorporated using iterative approach, i.e., secant modulus approach, in the interaction analysis. The effect the various parameters of the pile foundation such as spacing in a group and configuration of the pile group is evaluated on the response of superstructure owing to non-linearity of the soil. The response included the displacement at the top of the frame and bending moment in columns. The non-linearity of soil increases the top displacement in the range of 7.8%-16.7%. However, its effect is found very marginal on the absolute maximum moment in columns. The hogging moment decreases by 0.005% while sagging moment increases by 0.02%.

Uncertainties in blast simulations evaluated with Smoothed Particle Hydrodynamics method

  • Husek, Martin;Kala, Jiri
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.771-787
    • /
    • 2020
  • The paper provides an inside look into experimental measurements, followed by numerical simulations and their related uncertainties. The goal of the paper is to present findings related to blast loading and the handling of defects that are inherent in experiments. Very often it might seem that experiments are simplified reflections of real-life conditions. In most cases this is true, but there is a good reason for that. The more complex an experiment is, the larger the amount of uncertainties that can be expected. This especially applies when the blast loading of concrete is the subject of research. When simulations fail to reproduce the results of experimental measurements, it does not necessarily mean there is something wrong with the numerical model. The problem could be missing information. Put differently, the numerical simulation may lack information that seemed irrelevant with regard to the experiment. In the presented case, a reference simulation with a proven material model unexpectedly failed to replicate the results of an experiment where concrete slabs were exposed to blast loading. This resulted in a search for possible unknowns. When all of the uncertainties were examined, the missing information turned out to be the orientation of the charge to the concrete slab. Since the experiment was burdened with error, a sensitivity study had to take place so the influence of this factor could be better understood. The findings point to the fact that even the smallest defect during experiments must somehow be taken into account when designing numerical simulations. Otherwise, the simulations are not correlated to the experiments, but merely to some expectations.