• Title/Summary/Keyword: sky-earth

Search Result 171, Processing Time 0.026 seconds

Frank Lloyd Wright's Houses in relation to the Earth and the Sky (라이트의 주택에 나타난 대지와 하늘의 인식에 관한 연구)

  • Kim, Tai Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • Frank Lloyd Wright(1867-1959) had the confident concept that architecture should be at home in nature. His architecture was meant to bear an intimate relation to the earth and the sky, and should look as though it began there at the ground and contrasted with the sky. In handling all the details of house design elements, his efforts for being married to the ground was to conceive the void of the sky. This study is to research his thinking process and its development to the earth and the sky, and to analyze how such thought could reflect his houses. The mass of house are divided into three parts such as the foundation or base, body, and roof. These parts are respectively related to the earth and the sky. This study goes on regarding them as an analytical framework. The subjects of study are the Prairie houses in the early 20th century and the Usonian houses after 1930's. As results of this study, the earlier foundation as a platform appeared as a base and water table, and a strong baseline pressed the structures into the soil in the Prairie houses. The direct contact of wood and brick to ground were dominant details after Wiley house(1934). The base was almost invisible to the eye in the Usonian houses. Secondly, the pierlike shapes and delicate friezes of walls were anchored to the ground, and horizontal bands as trims or copings also got close to the earth. These characters had disappeared after the Allen house(1917), all components including exterior walls had been unified with the grid patterns in the Usonian houses. Thirdly, the overhanging cantilever roof had got to the earthbound by the reflection of shadow as well as their evident horizontal. He lowered the roof, lengthened and brought it closer to the ground. In this way, Frank Lloyd Wright intended his houses to be at home in nature. And also he tried to bind the houses to the earth and contrasted them with the sky. The houses would perform their highest function in relation to the earth and sky.

${\ll}$소문(素問).천원기대론(天元紀大論)${\gg}$에 대(對)한 연구(硏究)

  • Kim, Geun-Young;Yun, Chang-Yol
    • Journal of Korean Medical classics
    • /
    • v.11 no.1
    • /
    • pp.224-307
    • /
    • 1998
  • The above study is based upon the Theory of Five Woon(Reasons) and Six Qi(Climates), namely Five dynamic Yin and Yang, the principle of five-six combination, the rules of ten periodically changing Woon and twelve periodically changing Qi, and its reference to the main chapters of the theory by several experts. After careful, comprehensive research and study, the followings are concluded. 1. The Theory of Five Woon and Six Qi controls all of the physical phenomena of the universe, yet it originates from Essence of the Sky that is replete and in constant motion within the abysmal expanse of the universe. So it is natural to claim that it is the Essence of the universe that is the source of the variety of phenomena in nature. 2. There is order of dynamics in the Essence and it is Yin Yang Five Movement and expressed by Five Woon and Six Qi. Therefore the Five Woon and Six Qi, which is the climatic changes of nature, is the basis and condition for all of the natural, physical occurrences including the organic phenomena of human beings. 3. Since the Sky embodied the number Five, and the Earth the number Six, Qi of the Sky itself is consequently Five Woon and Qi of the Earth itself is Six Qi. 4. In Sixty Repetition Intervals (Yuk Sip Kap Ja), the Sky took the number Six, designating the six times repetition of the ten Intervals of the Sky and the Earth chose the number Five, symbolizing five times recurrence of the twelve Intervals of the Earth. Though the number for the Sky is Five and the number for the Earth is Six, the two combine and interact in order for the Sky to exploit the number Six and for the Earth to use the number Five. This interplay implies the relationship of operation and principle of Yin in Yang and Yang in Yin. 5. There seems to be clear and intimate association between five dynamics, five bearings and five Qi' in nature and five organs, five stamina, and five emotions in physiological activities of human beings. Such an correlation apparently demonstrates the idea of climatic changes of the universe in balance among human beings, the Sky, and the Earth. 6. Because nature is of an endlessly dynamic organism itself, to have changes must mear there being movements. Thus the climatic changes in nature are the subsequent consummation of the interaction in mutual balance and unbalance of the rise and fall of the Five Woon and Six Qi. 7. The interpretation, by Chang Ji Chong of "Yin and Yang of the Sky are for birth and growth and Yin and Yang of the Earth for demise and interment" as an explanation that the first half is mainly for life and the second half for death, appears to be correct by his view that there is balance and harmony between the long and short and the strong and weak. 8. In addition to Three Yang and Three Yin, as attributes of the Intervals of the Sky and the twelve Intervals of the Earth, Five Woon and Six Qi are utilized in the annual observation of the perpetual changes of climates.

  • PDF

Structural Interpretation of Properties and Flavors of Drugs (사기오미론(四氣五味論)의 구조적 해석)

  • Cho, Yong-Ju;Kim, Jin-Ju
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.23-33
    • /
    • 2005
  • Four Properties and five Flavors of Drugs is interpreted by adaptation of human body to the environmental theory(天人相應). The Structural model of the body is compared with sky, earth, sun and moon (天, 地, 日, 月). The natural changes of the four seasons give rise to that of Four Properties and five Flavors of Drugs. On equal terms it is happened in our body. On this study we can draw an analogy between sky, earth, sun & moon (天, 地, 日, 月) and the body. The six bu(六腑) is related to the earth, the five ju(五主) to the sky, the five jang(五臟) to the sun, the meridians system (經絡) to the moon. When spring, the air is warm, the water element of the earth is ascending, and the earth gives birth to the sour flavor. Like this, the water element is absorbed by six bu and then is ascended to the meridian system. When summer, the air is hot and the water element of the earth is floated, the earth make the bitter flavor. In the same way, the six bu absorbed the hot air from the five ju and the water element is quickly absorbed by six bu and then the water element is ascended to the meridian system. When rainy season (長夏), the earth creates the sweet flavor The sweet flavor give warmer energy to the five jang and the six bu. When autumn, the earth change the sweet flavor into pungent. The earth gives warmer energy to the sky, because of cool weather According to same process, the pungent flavor give warmer energy to the five jang and the six bu, and the meridian system gets back the water element from the five ju. When winter, the air is cold and the water element of the earth is hidden. The sky and the earth are not interchangeable. At that time, the earth produce the salty flavor and the water element is keeping in the meridian system.

  • PDF

Space(空問) and Sky-Earth(天地) - View of Space in the Architectures of the East and the West - (공간(空間)과 천지(天地) - 동서양 건축에서의 공간관 -)

  • Kim, Sung-Woo
    • Journal of architectural history
    • /
    • v.14 no.4 s.44
    • /
    • pp.7-28
    • /
    • 2005
  • We are so used to the concept of the term 'space' that we do not question its conceptual validity. However, this paper argues that the notion of space prevailing all over the world, is not a universal concept that can be applicable to all architectures of the world, but is a particular concept that is generated from the Western way of thinking. This paper alms to identify the conceptual structure of the idea of space as it is originated in the tradition of the West, and, as an alternative view of space, tries to identify the nature of the view of space perceived in the tradition of the Eastern architecture. Comparison of the two views, that of the East and the West, and their meaning in the future of architecture, is another task to discuss in this paper. To be able to clarify the meaning of space in East Asian tradition, a set of new perspective of understanding of space was invited. They are ; 1. sky-earth(天地); insisting that the notion of space should be replaced within the context of sky, which is one half of sky-earth totality 2. energy of the air (空氣), space is not empty part inside of a building, but is a dynamic condition of air that is a part of the sky which always exist in form of energy 3. place(자리): instead of space, which, basically. is a man-made concept, idea of place is necessary, which include not only space but also earth Such concept of space which is different from the notion of space of the West, is meaningful not only to identify the idea of space in the East, but also to be able to contribute for more dynamic, varied, and balanced understanding of space.

  • PDF

Astronomical Observation Environment Study focusing on Night Sky Brightness Variation under Light Pollution (광해에 따른 밤하늘의 밝기 변화를 중심으로 본 천문 관측 환경)

  • Lee, Jin-Hee;Choe, Seung-Urn;Jung, Jae-Hoon;Woo, Hong-Gyun
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.344-353
    • /
    • 2009
  • By measuring the brightness of night sky, we have investigated light pollution around the observatory in the College of Education, Seoul National University. As a result of measuring the extinction coefficient and photometric constants by standardization, in January 28, 2009, the extinction coefficient found to be $k_B$=0.359 and photometric constant was $C_B$=4.397. In March 27, 2009, extinction coefficients were $k_B$=0.896 and $k_V$=0.725, and photometric constants were $C_B$=6.235 and $C_V$=6.027. Brightness of the night sky was measured from east, west, south, and north each by altitude of $20^{\circ}$, $40^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$. Data reduction and analysis was based on IRAF. Seeings for the each day of observation were 5.1 and 5.7 arcseconds in January 28 and March 27, respectively. Night sky spanned the magnitude range of $16{\leq}m_V$, $m_B{\leq}18$ We found that the brightness of night sky located at downtown was twice to four times brighter. On these observational conditions, limiting magnitude within 40cm-telescope becomes 11-13 magnitudes. Compared with Jan 28 and Mar 27, night sky brightness of January is 1 magnitude fainter than that of March in B filter.

Aerosol radiative forcing estimated from ground-based sky radiation measurements over East Asia

  • Kim, Do-Hyeong;Sohn, B.J.;Nakajima, T.;Okada, I.;Takamura, T.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.12-16
    • /
    • 2002
  • The clear sky radiative forcings of aerosols were evaluated over East Asia. We first investigated optical characteristics of aerosol using sky radiation measurements. An algorithm of Nakajima et al. (1996) is used for retrieving aerosol parameters such as optical thickness, ${\AA}$ngstr$\"{O}$m exponent, single scattering albedo, and size distribution from sky-radiation measurements, which then can be used for examining spatial and temporal variations of aerosol. Obtaining aerosol radiative forcing at TOA and surface, a radiative transfer model is used with inputs of obtained aerosol parameters and GMS-5 satellite-based cloud optical properties. Results show that there is a good agreement of simulated downwelling radiative flux at the surface with observation within 10 W m$^{-2}$ rms errors under the clear sky condition. However, a relatively large difference up to 40 W m$^{-2}$ rms error is found under the cloudy sky condition. The computed aerosol radiative forcing at the surface shows downward flux changes ranging from -100 to -170 W m$^{-2}$ per unit aerosol optical thickness at 0.7 $\mu$m. The different values of aerosol radiative forcing among the stations is mainly due to the differences in single scattering albedo ($\omega$$_{0.7}$) and asymmetric parameter (g$_1$) related to the geographical and seasonal variations.

  • PDF

THE ASTRO-F ALL SKY SURVEY

  • PEARSON CHRIS;LEE HYUNG MOK;TEAM ASTRO-F
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.249-260
    • /
    • 2003
  • ASTRO-F is the next generation Japanese infrared space mission of the Institute of Space and Astronautical Science. ASTRO-F will be dedicated to an All Sky Survey in the far-infrared in 4 bands from 50-200microns with 2 additional mid-infrared bands at 9microns and 20microns. This will be the first all sky survey in the infrared since the ground breaking IRAS mission almost 20 years ago and the first ever survey at 170microns. The All Sky Survey should detect 10's of millions of sources in the far-infrared bands most of which will be dusty luminous and ultra-luminous star forming galaxies, with as many as half lying at redshifts greater than unity. In this contribution, the ASTRO-F mission and its objectives are reviewed and many of the mission expectations are discussed.

Identification of OH emission lines from IGRINS sky spectra and improved sky subtraction method

  • Lee, Jae-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2019
  • The hydroxyl radical (OH) sky emission lines arise from the Earth's mesosphere, and they serve as a major source of the sky background in the infrared. With IGRINS, the observed line strength show non-negligible variation even within a few minutes of time scale, making its subtraction difficult. Toward the aim better sky subtraction in the IGRINS pipeline, we present 1) improved identification of sky lines in H and K band and 2) improved method of subtracting sky background. Using the recent line list of Brooke et al. (2015), we have detected ~500 OH doublets from upper vibrational level between 2 and 9 and maximum upper J level of 25. In particular, we found that a significant fraction of unidentified lines reported by Oliva et al. (2015) are indeed OH lines resulting from transitions between different F levels. With the extended line identification, we present an improved method of sky subtraction. The method, based on the method of Noll et al. (2014), empirically accounts non-LTE level population of OH molecules.

  • PDF

DEVELOPMENT OF CCD CAMERA FOR OBSERVING WIDE FIELDS (천체의 광역 관측을 위한 CCD 카메라 개발)

  • YU YOUNG SAM;PAK SOOJONG;KIM MINJIN;LEE SUNGHO;BYUN YONG-IK;CHUN MOO-YOUNG;HAN WONYONG
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • We developed a CCD camera that can observe wide fields on the sky. We tested the field of views using various lenses. For cooling the CCD chip, we used a thermoelectric cooling device and tested the cooling efficiency. This camera will continuously observe a part of the sky. The data from the camera will be used to decide the current weather condition by the real-time star counting program (SCount) which will be developed later.

  • PDF

ADVANTAGES OF THE AKARI FIR ALL-SKY MAPS

  • Doi, Yasuo;Takita, Satoshi;Ootsubo, Takafumi;Arimatsu, Ko;Tanaka, Masahiro;Morishima, Takahiro;Kawada, Mitsunobu;Matsuura, Shuji;Kitamura, Yoshimi;Hattori, Makoto;Nakagawa, Takao;White, Glenn;Ikeda, Norio
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • We present the AKARI far-infrared (FIR) all-sky maps and describe its characteristics, calibration accuracy and scientific capabilities. The AKARI FIR survey has covered 97% of the whole sky in four photometric bands, which cover continuously 50-180 micron with band central wavelengths of 65, 90, 140, and 160 microns. The data have been publicly released in 2014 (Doi et al., 2015) with improved data quality that have been achieved since the last internal data release (Doi et al., 2012). The accuracy of the absolute intensity is ${\leq}10%$ for the brighter regions. Quantitative analysis of the relative intensity accuracy and its dependence upon spatial scan numbers has been carried out. The data for the first time reveal the whole sky distribution of interstellar matter with arcminute-scale spatial resolutions at the peak of dust continuum emission, enabling us to investigate large-scale distribution of interstellar medium in great detail. The filamentary structure covering the whole sky is well traced by the all-sky maps. We describe advantages of the AKARI FIR all-sky maps for the study of interstellar matter comparing to other observational data.