Browse > Article
http://dx.doi.org/10.5303/PKAS.2017.32.1.011

ADVANTAGES OF THE AKARI FIR ALL-SKY MAPS  

Doi, Yasuo (Department of Earth Science and Astronomy, University of Tokyo)
Takita, Satoshi (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Ootsubo, Takafumi (Department of Earth Science and Astronomy, University of Tokyo)
Arimatsu, Ko (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Tanaka, Masahiro (Center for Computational Sciences, University of Tsukuba)
Morishima, Takahiro (Astronomical Institute, Tohoku University)
Kawada, Mitsunobu (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Matsuura, Shuji (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Kitamura, Yoshimi (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Hattori, Makoto (Astronomical Institute, Tohoku University)
Nakagawa, Takao (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
White, Glenn (Department of Physical Sciences, The Open University)
Ikeda, Norio (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Publication Information
Publications of The Korean Astronomical Society / v.32, no.1, 2017 , pp. 11-15 More about this Journal
Abstract
We present the AKARI far-infrared (FIR) all-sky maps and describe its characteristics, calibration accuracy and scientific capabilities. The AKARI FIR survey has covered 97% of the whole sky in four photometric bands, which cover continuously 50-180 micron with band central wavelengths of 65, 90, 140, and 160 microns. The data have been publicly released in 2014 (Doi et al., 2015) with improved data quality that have been achieved since the last internal data release (Doi et al., 2012). The accuracy of the absolute intensity is ${\leq}10%$ for the brighter regions. Quantitative analysis of the relative intensity accuracy and its dependence upon spatial scan numbers has been carried out. The data for the first time reveal the whole sky distribution of interstellar matter with arcminute-scale spatial resolutions at the peak of dust continuum emission, enabling us to investigate large-scale distribution of interstellar medium in great detail. The filamentary structure covering the whole sky is well traced by the all-sky maps. We describe advantages of the AKARI FIR all-sky maps for the study of interstellar matter comparing to other observational data.
Keywords
surveys; atlases; ISM: general; galaxy: general; galaxies: general; infrared: ISM; infrared: galaxies;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Planck Collaboration, Abergel, A., Ade, P. A. R., et al. 2014, Planck 2013 results. XI. All-sky model of thermal dust emission, A&Ap, 571, A11   DOI
2 Planck Collaboration, Ade, P. A. R., Aghanim, N., Alves, M. I. R., et al. 2014, Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations, arXiv:1409.2495
3 Takita, S., Doi, Y., Arimatsu, K., et al. 2015, Calibration of the AKARI far-infrared all-sky survey maps, PASJ, 67, 51   DOI
4 Takita, S., Doi, Y., Ootsubo, T., et al. 2015, FIR VIEW OF DISKS OF WEAK-LINE T TAURI STARS, this volume.
5 Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, The Wide-eld Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance, AJ, 140, 1868   DOI
6 Sousbie, T. 2013, DisPerSE: robust structure identication in 2D and 3D, arXiv:1302.6221
7 Compiegne, M., Verstraete, L., Jones, A., et al. 2011, The global dust SED: tracing the nature and evolution of dust with DustEM, A&Ap, 525, A103   DOI
8 Doi, Y., Komugi, S., Kawada, M., et al. 2012, Akari Far-Infrared All-Sky Survey Maps, Publication of Korean Astronomical Society, 27, 111   DOI
9 Doi, Y., Takita, S., Ootsubo, T., et al. 2015, The AKARI far-infrared all-sky survey maps, PASJ, 67, 50   DOI
10 Draine, B. T., & Li, A. 2007, Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era, ApJ, 657, 810   DOI
11 Meisner, A. M., & Finkbeiner, D. P. 2014, Modeling Thermal Dust Emission with Two Components: Application to the Planck HFI Maps, ApJ, 781, 5
12 Neugebauer, G., Habing, H. J., van Duinen, R., et al. 1984, The Infrared Astronomical Satellite (IRAS) mission, ApJL, 278, L1   DOI
13 Okabe, T., Kashiwagi, T., Suto, Y., et al. 2015, Image Stacking Analysis of SDSS Galaxies with AKARI Far-Infrared Surveyor Maps at $65{\mu}m$, $90{\mu}m$, and $140{\mu}m$, accepted for publication in PASJ, arXiv:1512.02768
14 Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy, A&Ap, 518, L1   DOI
15 Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, Planck early results. I. The Planck mission, A&Ap, 536, A1   DOI
16 Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy, A&Ap, 536, A19   DOI
17 Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, Planck 2013 results. I. Overview of products and scientic results, A&Ap, 571, A1   DOI
18 Boggess, N. W., Mather, J. C., Weiss, R., et al. 1992, The COBE mission: Its design and performance two years after launch, ApJ, 397, 420   DOI
19 Andre, P. 2013, The Herschel View of Star Formation, arXiv:1309.7762