• 제목/요약/키워드: skin-color model

검색결과 168건 처리시간 0.03초

강건한 다인종 얼굴 검출을 위한 통합 3D 피부색 모델 (Integrated 3D Skin Color Model for Robust Skin Color Detection of Various Races)

  • 박경미;김영봉
    • 한국콘텐츠학회논문지
    • /
    • 제9권5호
    • /
    • pp.1-12
    • /
    • 2009
  • 올바른 피부색 검출은 사람의 얼굴 검출 및 동작 분석에서 매우 중요한 전처리과정에 속한다. 피부 검출은 일반적으로 화소의 칼라 공간을 Non-RGB로 변형하고, 피부색의 조명 요소를 제거한 다음 피부색 분포 모델에 의해 Skin과 Non-Skin으로 분류하는 3단계로 진행된다. 이는 피부색 검출이 칼라 공간, 조명 요소의 존재 여부, 피부 모델링 방법에 따라 수행 성능에 많은 영향을 받기 때문이다. 본 연구에서는 조명 조건에 따라 피부색 모델의 범위에 차이가 있다는 사실에 기초하여 다양한 조명 조건과 복잡한 배경을 가진 영상에서 효과적으로 다인종의 피부색을 분류해내 기 위한 3차원 피부색 모델을 제시하고자 한다. 제안된 피부색 모델은 화소의 칼라 공간을 YCbCr공간으로 변형하고, 각 요소(Y, Cb, Cr) 값에 의한 3차원 피부색 모델을 형성한다. 다인종의 피부색을 함께 분할하기 위해 인종(백인, 흑인, 황인)별 피부색 모델을 먼저 생성한 후 각각의 모델에서 피부색 확률에 따라 결합한 다인종을 위한 통합 모델을 생성하였다. 또한 우리는 적은 양의 훈련 데이터로 피부색 영역을 올바르게 검출할 수 있도록 여러 단계의 피부색 영역을 설정하였다.

단일 영상에서 효과적인 피부색 검출을 위한 2단계 적응적 피부색 모델 (2-Stage Adaptive Skin Color Model for Effective Skin Color Segmentation in a Single Image)

  • 도준형;김근호;김종열
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.193-196
    • /
    • 2009
  • 단일 영상에서 피부색 영역을 추출하기 위해서 기존의 많은 방법들이 하나의 고정된 피부색 모델을 사용한다. 그러나 영상에 특성에 따라 영상에 포함된 피부색의 분포가 다양하기 때문에 이러한 방법을 이용하여 피부색을 검출할 경우 낮은 검출율이나 높은 긍정 오류율이 발생할 수 있다. 따라서 영상의 특징에 따라 적응적으로 피부색 영역을 추출할 수 있는 방법이 필요하다. 이에 본 논문에서는 영상의 특징에 따라 2단계의 과정을 거쳐 피부색 모델을 수정하는 방법으로, 다양한 조명과 환경 조건에서 높은 검출율과 낮은 긍정 오류율을 동시에 가지는 알고리즘을 제안한다.

  • PDF

피부색 모델 기반의 효과적인 얼굴 검출 연구 (Efficient Face Detection based on Skin Color Model)

  • 백영현
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.38-43
    • /
    • 2008
  • 피부색 정보는 컬러영상에 포함된 얼굴영역을 검출하는 중요한 요소이다. 피부색 정보로 부터 생성된 통계 피부색 모델을 이용하여 얼굴영역을 검출할 수 있다. 하지만 다른 피부색 부분이 포함되어 있는 컬러영상에서는 일반적인 통계 피부색 모델만으로 정확한 얼굴영역 검출을 할 수 없는 단점을 가진다. 본 논문에서는 다른 피부색 부분이 포함되어 있는 다양한 컬러 영상에서 얼굴영역만을 정확히 검출하기 위한 방법을 제안한다. 제안된 방법은 YCbCr 피부 컬러 모델기반의 피부색 가우시안 분포를 적용하여 얼굴 후보영역 설정 하였고, 영상내의 잡음 부분과 얼굴 영역이외의 부분을 제거하기 위해 수학적 형태학을 적용하였다. 그리고 Haar-like 특성을 이용하여 정확한 얼굴 검출을 수행하였다. 모의실험 결과 제안된 방법이 목이나 팔과 같이 유사한 피부색을 포함한 영상과 다양한 크기의 영상에서도 효과적인 얼굴영역 검출하는 우수함을 보였다.

계층화된 3차원 피부색 모델을 이용한 피부색 분할 (Skin Color Region Segmentation using classified 3D skin)

  • 박경미;윤가림;김영봉
    • 한국정보통신학회논문지
    • /
    • 제14권8호
    • /
    • pp.1809-1818
    • /
    • 2010
  • 피부색 영역의 검출을 위한 기존 연구들은 영상의 각 픽셀을 피부에 속하는 픽셀(피부픽셀)과 속하지 않는 픽셀(비피부픽셀)로 나누게 된다. 이때 정확한 피부색 영역을 검출하는 작업은 영상의 조명효과 및 화장에 의한 피부색 변형 등으로 매우 어려운 작업이다. 본 논문에서는 피부 영역 검출을 어렵게 하는 여러 가지 요인을 포함한 영상들로부터 효율적으로 피부영역을 검출하기 위해 계층화된 피부 모델과 컨텍스트 정보를 통합하여 피부 영역 검출의 성능을 향상시키는 방법을 제안한다. 먼저, 획득된 영상들로부터 뽑아낸 피부색 색깔 값들의 확률분포를 YCbCr칼라 공간에 만들고, 그 확률 값에 따라 피부(Skin), 피부후보(Skinness), 비피부(Non-skin)의 3계층으로 분류한 3차원 피부색 모델을 만든다. 계층화된 피부색 모델을 이용하여 각 픽셀의 피부색 여부를 결정하고, 피부후보(Skinness)색에 해당하는 경우에는 이웃 화소의 정보를 고려하여 피부색 또는 비 피부색으로 정하게 된다. 제안 방법의 사용으로 피부색이 왜곡 되었거나 피부색과 유사한 객체가 포함된 다양한 영상들에서도 효율적으로 피부 영역을 분할할 수 있었다.

Skin Segmentation Using YUV and RGB Color Spaces

  • Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
    • Journal of Information Processing Systems
    • /
    • 제10권2호
    • /
    • pp.283-299
    • /
    • 2014
  • Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

컬러 정보와 피부색 모델을 이용한 피부 영역 검출 (Skin Region Extraction Using Color Information and Skin-Color Model)

  • 박성욱;박종관;박종욱
    • 전자공학회논문지 IE
    • /
    • 제45권4호
    • /
    • pp.60-67
    • /
    • 2008
  • 피부색은 자동화된 얼굴 인식을 위한 매우 중요한 정보 중의 하나이다. 본 논문에서는 컬러 정보와 피부색 모델을 이용한 피부 영역 검출 기법을 제안하였다. 제안된 방법은 적응적 조명 보정 기법을 통해 피부색 영역의 검출 성능을 개선하였고 전처리 필터를 적용하여 피부색이 아닌 영역을 먼저 제거시킴으로써 처리 속도를 향상시켰다. 또한 피부색 검출 성능이 우수한 ST 컬러 공간을 수정하여, 보다 정확한 피부색 영역을 추출할 수 있도록 하였다. 제안된 방법의 실험 결과 기존의 방법과 비교하여 보다 우수한 검출 결과를 나타냈으며, 처리 속도 또한 약 $33{\sim}48%$ 향상시킬 수 있었다.

형태분석과 피부색모델을 다층 퍼셉트론으로 사용한 운전자 얼굴추출 기법 (Driver face localization using morphological analysis and multi-layer preceptron as a skin-color model)

  • 이종수
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.249-254
    • /
    • 2013
  • In the area of computer vision, face recognition is being intensively researched. It is generally known that before a face is recognized it must be localized. Skin-color information is an important feature to segment skin-color regions. To extract skin-color regions the skin-color model based on multi-layer perceptron has been proposed. Extracted regions are analyzed to emphasize ellipsoidal regions. The results from this study show good accuracy for our vehicle driver face detection system.

딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구 (A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning)

  • 정민욱;김현지;곽채원;오유수
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

피부색에 따른 병변치료를 위한 광조사펄스모델링에 대한 설계 및 구현 (Design and embodiment about pulse modeling of light investigation for disease treatment by skin color)

  • 김휘영
    • 한국컴퓨터산업학회논문지
    • /
    • 제7권5호
    • /
    • pp.563-572
    • /
    • 2006
  • 피부를 통한 최적의 광투과 치료방식은 국소병변에 직접적으로 광을 조사할 수 있는 장점을 가지나 피부의 가장 바깥 부분인 각질부의 다양한 피부색상으로 인해 광전달 능력에 차이가 있고 다양한 환자에 따라 치료가 부적절 할 수가 있다. 본 연구에서는 피부 임피이던스에 따른 광조사 방식에 따른 일정한 측정을 하기 위해 피부 임피이던스 방식과 피부영역 추출을 통해 색상정보와 차영상을 이용한 방법 즉, 색상정보를 이용한 HIS와 YIQ의 성분이 가장 보편적인데 실험에서는 피부색상에 해당하는 각 색상성분을 탐색한 다음, 색상정보를 이용한 결과로 환자의 피부모델 영역검출에 따라 결과를 영상정보를 통해 개개인의 피부모델을 자동적으로 생성, 측정하여 피부색깔, 에너지, 파장, 폭, 조사시간, 펄스지연 등을 추출하여 원하는 최적의 모델과 특성을 조사하며, 피부 임피이던스에 따른 병변치료 펄스모델링의 기준을 구하였고, 피부부하에 따른 최적의 광조사 펄스모델링 시스템을 설계하여 제작하여, 피부칼라에 따른 적절한 치료펄스 데이터베이스를 구축하였다.

  • PDF