• 제목/요약/키워드: skin and structure

검색결과 762건 처리시간 0.031초

Skin Lesion Segmentation with Codec Structure Based Upper and Lower Layer Feature Fusion Mechanism

  • Yang, Cheng;Lu, GuanMing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.60-79
    • /
    • 2022
  • The U-Net architecture-based segmentation models attained remarkable performance in numerous medical image segmentation missions like skin lesion segmentation. Nevertheless, the resolution gradually decreases and the loss of spatial information increases with deeper network. The fusion of adjacent layers is not enough to make up for the lost spatial information, thus resulting in errors of segmentation boundary so as to decline the accuracy of segmentation. To tackle the issue, we propose a new deep learning-based segmentation model. In the decoding stage, the feature channels of each decoding unit are concatenated with all the feature channels of the upper coding unit. Which is done in order to ensure the segmentation effect by integrating spatial and semantic information, and promotes the robustness and generalization of our model by combining the atrous spatial pyramid pooling (ASPP) module and channel attention module (CAM). Extensive experiments on ISIC2016 and ISIC2017 common datasets proved that our model implements well and outperforms compared segmentation models for skin lesion segmentation.

The Effect of γ-Aminobutyric Acid Intake on UVB- Induced Skin Damage in Hairless Mice

  • Hairu Zhao;Bomi Park;Min-Jung Kim;Seok-Hyun Hwang;Tae-Jong Kim;Seung-Un Kim;Iksun Kwon;Jae Sung Hwang
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.640-647
    • /
    • 2023
  • The skin, the largest organ in the body, undergoes age-related changes influenced by both intrinsic and extrinsic factors. The primary external factor is photoaging which causes hyperpigmentation, uneven skin surface, deep wrinkles, and markedly enlarged capillaries. In the human dermis, it decreases fibroblast function, resulting in a lack of collagen structure and also decreases keratinocyte function, which compromises the strength of the protective barrier. In this study, we found that treatment with γ-aminobutyric acid (GABA) had no toxicity to skin fibroblasts and GABA enhanced their migration ability, which can accelerate skin wound healing. UVB radiation was found to significantly induce the production of matrix metalloproteinase 1 (MMP-1), but treatment with GABA resulted in the inhibition of MMP-1 production. We also investigated the enhancement of filaggrin and aquaporin 3 in keratinocytes after treatment with GABA, showing that GABA can effectively improve skin moisturization. In vivo experiments showed that oral administration of GABA significantly improved skin wrinkles and epidermal thickness. After the intake of GABA, there was a significant decrease observed in the increase of skin thickness measured by calipers and erythema. Additionally, the decrease in skin moisture and elasticity in hairless mice exposed to UVB radiation was also significantly restored. Overall, this study demonstrates the potential of GABA as functional food material for improving skin aging and moisturizing.

Engineered Stretchability of Conformal Parylene Thin-film On-skin Electronics

  • Jungho Lee;Gaeun Yun;Juhyeong Jeon;Phuong Thao Le;Seung Whan Kim;Geunbae Lim
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.335-339
    • /
    • 2023
  • Skin-compatible electronics have evolved to achieve both conformality and stretchability for stable contact with deformable biological skin. While existing research has largely concentrated on alternative materials, the potential of Parylene-based thin-film electrodes for stretchable on-skin applications remains relatively untapped. This study proposes an engineering strategy to achieve stretchability using the Parylene thin-film electrode. Unlike the conventional Parylene thin-film electrode, we introduce morphological adaptability via controlled microscale slits in the Parylene electrode structure. The slits-containing device enables unprecedented stretchability while maintaining critical electrical insulation properties during mechanical deformation. Finally, the demonstration on human skin shows the mechanical adaptability of these Parylene-based bioelectrodes while their electrical characteristics remain stable during various stretching conditions. Owing to the ultra-thinness of the Parylene coating, the wearable bioelectrode not only achieves stretchability but also conforms to the skin. Our findings broaden the practical use of Parylene thin-film bioelectrodes.

Effect of anti-skin disorders of ginsenosides- A Systematic Review

  • Lele Cong;Jinli Ma;Yundong Zhang;Yifa Zhou;Xianling Cong;Miao Hao
    • Journal of Ginseng Research
    • /
    • 제47권5호
    • /
    • pp.605-614
    • /
    • 2023
  • Ginsenosides are bioactive components of Panax ginseng with many functions such as anti-aging, anti-oxidation, anti-inflammatory, anti-fatigue, and anti-tumor. Ginsenosides are categorized into dammarane, oleanene, and ocotillol type tricyclic triterpenoids based on the aglycon structure. Based on the sugar moiety linked to C-3, C-20, and C-6, C-20, dammarane type was divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). The effects of ginsenosides on skin disorders are noteworthy. They play antiaging roles by enhancing immune function, resisting melanin formation, inhibiting oxidation, and elevating the concentration of collagen and hyaluronic acid. Thus, ginsenosides have previously been widely used to resist skin diseases and aging. This review details the role of ginsenosides in the anti-skin aging process from mechanisms and experimental research.

고고도 장기체공무인기 경량 주익 스파 설계 (Light Wing Spar Design for High Altitude Long Endurance UAV)

  • 신정우;박상욱;이무형;김태욱
    • 한국항공운항학회지
    • /
    • 제22권2호
    • /
    • pp.27-33
    • /
    • 2014
  • There are several methods to improve the flight efficiency of HALE(High Altitude Long Endurance) UAV(Unmaned Aerial Vehicle). Airframe structural point of view, weight reduction of the airframe structure is the most important method to improve the flight efficiency. In order to reduce the weight of airframe structures, new concepts which are different from traditional airframe structure design such as the mylar wing skin should be introduced. The spar is the most important component in a mylar skin wing structure, so the spar weight reduction is the key point for reduction of the wing structural weight. In this study, design trade-off study for the front spar of the HALE UAV wing is conducted in order to reduce the weight. Design and analysis procedure of high aspect ratio wing spar are introduced. Several front spar structures are designed and trade-off study regarding the weight and strength for the each spar are performed. Spar design configurations are verified by the static strength test. Finally, optimal front spar design is decided and applied to the HALE UAV wing design.

Strain sensing skin-like film using zinc oxide nanostructures grown on PDMS and reduced graphene oxide

  • Satish, Tejus;Balakrishnan, Kaushik;Gullapalli, Hemtej;Nagarajaiah, Satish;Vajtai, Robert;Ajayan, Pulickel M.
    • Structural Monitoring and Maintenance
    • /
    • 제4권2호
    • /
    • pp.107-113
    • /
    • 2017
  • In this paper, we present a strain-sensitive composite skin-like film made up of piezoresistive zinc oxide (ZnO) nanorods embedded in a flexible poly(dimethylsiloxane) substrate, with added reduced graphene oxide (rGO) to facilitate connections between the nanorod clusters and increase strain sensitivity. Preparation of the composite is described in detail. Cyclic strain sensing tests are conducted. Experiments indicate that the resulting ZnO-PDMS/rGO composite film is strain-sensitive and thus capable of sensing cycling strain accurately. As such, it has the potential to be molded on to a structure (civil, mechanical, aerospace, or biological) in order to provide a strain sensing skin.

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • 김도일;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

색도 변환과 퍼지 클러스터링을 이용한 입술영역 추출 (Extraction of Lip Region using Chromaticity Transformation and Fuzzy Clustering)

  • 김정엽
    • 한국멀티미디어학회논문지
    • /
    • 제17권7호
    • /
    • pp.806-817
    • /
    • 2014
  • The extraction of lip region is essential to Lip Reading, which is a field of image processing to get some meaningful information by the analysis of lip movement from human face image. Many conventional methods to extract lip region are proposed. One is getting the position of lip by using geometric face structure. The other discriminates lip and skin regions by using color information only. The former is more complex than the latter, however it can analyze black and white image also. The latter is very simple compared to the former, however it is very difficult to discriminate lip and skin regions because of close similarity between these two regions. And also, the accuracy is relatively low compared to the former. Conventional analysis of color coordinate systems are mostly based on specific extraction scheme for lip regions rather than coordinate system itself. In this paper, the method for selection of effective color coordinate system and chromaticity transformation to discriminate these two lip and skin region are proposed.

자동화된 공력-구조 연계 시스템을 이용한 소형항공기 날개 샌드위치구조 최적설계 (Optimization of Sandwich Structures of a Small Aircraft Wing using Automated Aero- Structure Interaction Systems)

  • 박찬우;추재명;설창원;전승문
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1061-1068
    • /
    • 2013
  • In this research, the design optimization of a composite sandwich has been performed for using as an airplane wing skin. Automated analysis framework for aero-structure interaction is used for calculating load data on the wing. For automated analysis framework, FLUENT is used for computational fluid dynamics (CFD) analysis. CFD mesh is generated automatically by using parametric modeling of CATIA and GAMBIT. A computational structure mechanics (CSM) mesh is generated automatically by the parametric method of the CATIA and visual basic script of NASTRAN-FX. The structure is analyzed by ABAQUS. Composite sandwich optimization is performed by NASTRAN SOL200. Design variables are thicknesses of the sandwich core and composite skin panel plies. The objective is to minimize the weight of the wing and constraints are applied for wing tip displacement, global failure index and local failure indexes.

충격파와 경계층 간섭유동 제어에서 오일막을 이용한 유동가시화 (Flow Visualization Using Thin Oil-Film in the Flow Control of Shock Wave/Turbulent Boundary-Layer Interactions)

  • 이열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2002
  • An experimental research has been carried out for flow control of the shock wave/turbulent boundary-layer interaction utilizing aeroelastic mesoflaps. Various shapes and thicknesses of the mesoflap are tested to achieve different deflections of the flap, and ail the results are compared to the solid-wall reference case without flow-control mechanism. Quantitative variation of skin friction has been measured downstream of the interactions using the laser interferometer skin friction meter, and qualitative skin friction distribution has been obtained by observing the interference fringe pattern on the oil-film surface. A strong spanwise variation in the fringe patterns with a narrow region of separation near the centerline is noticed to form behind the shock structure, which phenomenon is presumed partially related to three-dimensional flow structures associated with both the sidewalls and the bottom test surface. The effect of the shape of the cavity is also observed and it is noticed that the shape of the cavity is not negligible.

  • PDF