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Abstract 
 
The U-Net architecture-based segmentation models attained remarkable performance in 
numerous medical image segmentation missions like skin lesion segmentation. Nevertheless, 
the resolution gradually decreases and the loss of spatial information increases with deeper 
network. The fusion of adjacent layers is not enough to make up for the lost spatial information, 
thus resulting in errors of segmentation boundary so as to decline the accuracy of segmentation. 
To tackle the issue, we propose a new deep learning-based segmentation model. In the 
decoding stage, the feature channels of each decoding unit are concatenated with all the feature 
channels of the upper coding unit. Which is done in order to ensure the segmentation effect by 
integrating spatial and semantic information, and promotes the robustness and generalization 
of our model by combining the atrous spatial pyramid pooling (ASPP) module and channel 
attention module (CAM). Extensive experiments on ISIC2016 and ISIC2017 common datasets 
proved that our model implements well and outperforms compared segmentation models for 
skin lesion segmentation. 
 
 
Keywords: semantic segmentation, skin lesion segmentation, deep learning, convolutional 
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1. Introduction 

Skin cancer is one of the most common malignant tumors in humans [1], and non-melanoma 
skin cancers are the most common malignant skin lesions. According to GLOBOCAN 2020 
[2], melanoma accounts for about 20% of all skin cancer cases, while 47.2% of skin cancer 
deaths are due to melanoma, thus early detection of melanoma can save lives. The current 
methods used to identify melanoma skin lesion mainly include dermatoscopy and visual 
observation. Dermatoscopy, which is often used in skin imaging, has the advantages of high 
safety, non-invasiveness and effectiveness. However, relying only on these methods to 
diagnose and accurately localize melanoma skin lesions is not only labor-intensive and time-
consuming, but also leads to the subjective results. Therefore, there is an urgent need to 
develop an intelligent end-to-end automatic segmentation method for skin lesions, which can 
generate accurate segmentation of skin lesions, so as to improve the diagnosis ability of 
doctors. Nonetheless, it is an extremely challenging task due to the complex problems of 
blurred boundaries, diverse appearances of lesions, low contrast between lesions and 
surrounding normal skin, and in some images, lesions are covered by hairs, borders, blood 
vessels, bubbles, etc. 

Early on, a very popular method used to segment lesion area based on a threshold [3]. 
These techniques perform well in low-level segmentation tasks, but result in over-
segmentation for images with low contrast, diverse colors and unclear boundary. Another 
important segmentation method is based on area [4], which utilizes the characteristic that the 
nearby pixels have uniform colors. Booming of artificial intelligence (AI) and remarkable 
performance of deep learning methods based on image processing tasks, researchers have 
started to apply it into segmentation of medical images, and have achieved huge success. 

VGGNet [5], GoogLeNet [6,7], and ResNet [8] exhibited outstanding performance in 
image recognition tasks. Accordingly, to train better network models and improve the 
segmentation precision, more and more researchers prefer to use these classic networks as the 
backbone network, and they even use the pre-trained weights of these models (trained on the 
ImageNet dataset [9]) to extract features from dermoscopy images. Since the introduction of 
U-Net structure [10], many U-Net structure-based segmentation models have achieved 
remarkable indices. For example, the winner of the International Skin Imaging Collaboration 
(ISIC) 2018 [11] used the U-Net network structure with ResNet-101 as the backbone for 
feature extraction. The U-Net segmentation framework has a classic coding and decoding 
structure, which favors recreating the limited ability of reconstructing precise details in 
segmented image, due to insufficient resolution of the advanced encoder feature map, by 
concatenating and fusing channels among adjacent layers. Progressively deepening network 
will decrease resolution of feature maps and cause inadequacy of spatial information, which 
will lead to an insufficient positive effect of the above integration mechanism to make up for 
the lost spatial information, ultimately resulting in an error on the segmentation boundary. 

Low-level features have abundant details, but lack semantic information. In comparison, 
high-level features have strong semantics, but suffer from severe loss of spatial information. 
The method proposed here concatenates the feature channels of each decoding unit to the 
feature channel of all upper-layer encoding units during the decoding stage, which can 
effectively integrate the spatial information and semantic information to produce better 
segmentation results. Furthermore, the atrous spatial pyramid pooling (ASPP) module and 
channel attention module (CAM) are appended to the network to enhance robustness and 
generalization of the model. 
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The vital contributions of the paper are in three aspects: 
• It proposes a new deep learning-based segmentation model, which ensures the 

effectiveness of the segmentation by effectively integrating spatial and semantic 
information in decoding stage of the network. The remarkable performance and 
superiority of the proposed model compared to other segmentation models are 
demonstrated through extensive experiments on the ISIC2016 and ISIC2017 common 
datasets. 

• By adding an ASPP module to the network, the robustness of the segmentation model for 
multi-scale scenarios is enhanced, and the receptive field is enlarged without increasing 
parameters. 

• By inserting a CAM into the network, the model assigns different weights to each feature 
channel to make the training more focused without extra computation and storage costs. 

2. Related Works 

In the past few decades, many classic algorithms [12-15] have been used in skin lesion 
segmentation, but none of these methods can capture advanced semantic information due to 
their dependence on artificial features. In recent years, deep-learning has promoted the 
blossom of semantic segmentation methods based on it. A fully convolutional network (FCN) 
[17] is the pioneering work in this field which focuses on building a FCN, by inputting an 
image of any size, the network will output segmentation result at the same scale after effective 
learning and inference. Such CNN-based training model, characterized by the pattern of end-
to-end and pixel-to-pixel, outperforms all previous semantic segmentation approaches, which 
simultaneously revealed a new direction for subsequent improvement and development of 
semantic segmentation algorithms. U-Net defines a contraction path to obtain the global 
information, and also defines a symmetrical expansion path to achieve precise positioning, 
from which the coding and decoding structure is established, providing end-to-end training 
with a small number of images with a fast-processing speed. By combining both the low-
resolution and high-resolution information, U-Net is applicable to the segmentation of medical 
images, and has become the benchmark model in many medical imaging semantic 
segmentation tasks. By employing classic CNNs as the main network such as VGGNet, 
ResNet and Xception [16], the DeepLab series models [17-20] share the pre-trained parameter 
weights of the model and shorten the training time. By introducing atrous pooling, the 
problems of low resolution and feature extraction under multi-scale is solved. The ASPP 
module is designed to achieve the best performance of atrous pooling, which can improve the 
robustness of the network with multi-scale and multi-class segmentation. 

The deep learning methods have achieved great success in segmentation of skin lesions. 
In [21], the appearance and context information of the image is combined in an automatic 
context scheme to check the boundary of the lesion. In [22], a multi-stage FCN architecture is 
designed, and the context information is used to repeatedly check the lesion area. [23] used 
the Jaccard distance loss to train the traditional FCN, so as to segment the skin lesion. In report 
[24], during the U-Net coding and decoding process for skin lesion detection, the dense 
convolution blocks are used to replace the traditional convolutional layers. 
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3. Proposed Method 

3.1 Network architecture 

The overall architecture proposed, shown in Fig. 1, adopts the coding and decoding structure, 
and it is called the Upper and Lower Layers Feature Fusing Network (ULFFN). The entire 
network consists of four parts: input, coding, decoding and output. The input section is 
completed with one convolutional operation, by which the original 3-channel color image is 
nonlinearly activated into 64-channel feature maps and imported into the encoder. 
Downsampling and feature extraction are performed on the input image in the coding, then 
upsampling above the feature maps is performed layer-by-layer during decoding, and 
eventually segmented images are generated. The model designs four downsampling and four 
upsampling modules as the components of the encoder and decoder, respectively. The feature 
map output from the decoder enters the CAM, in this way, different levels of channels can be 
played to focus the segmentation more on the target. Finally, the feature map with 2 channels 
is produced through convolution operation, and the probability of each pixel at the background 
and foreground is generated independently by using the SoftMax activation function to 
generate the binary classification score map. 

Each code unit consists of a convolution block during coding, and the convolution block 
is composed of the deep convolution with residual structure and the downsampling operation. 
Pooling is widely used to downsample, but a lot of information tends to be lost during pooling. 
Furthermore, it cannot achieve reverse gradient updating, so pooling is not learnable. The 
ULFFN explores full convolution with extended convolution stride to implement 
downsampling in order to maximize the integrity of the image information. In a CNN, the size 
of the original image area mapped by the pixels on the feature map output by each layer is 
called the receptive field. In general, a bigger receptive field provides better results than a 
small one, but a bigger stride may lower the feature resolution, which will result in less 
information retained in the feature map. In order to maintain the same feature resolution as 
well as to further expand the receptive field, we embed the ASPP module at the bottom of the 
ULFFN to achieve richer semantic features, increasing pixel classification precision and 
improving segmentation performance. 

In the process of decoding, the feature channel of each decode unit is connected and 
integrated into the feature channel of all upper-layer code units, and then upsampling is 
conducted, which ensures that spatial and semantic information are fully merged. Previous 
studies generally implemented upsampling by means of deconvolution or un-pooling, whereas 
we adopt the sub-pixel convolution method to acquire multiple upsampling on consideration 
of outstanding performances in the reconstruction of super-resolution images, and it also 
performed well in the training and testing of the ULFFN. 
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Fig. 1. The network architecture of the ULFFN. 

3.2 Convolution block 

The number of neural network layers plays a significant role in model performance and 
numerous experiments have demonstrated that deeper networks have more superior 
performance, as layer stacking enable the network to extract the layer features more effectively. 
However, if we simply superimpose layers straightway, it will cause gradient vanishing and 
non-convergent training processes, or the training process may converge to the local optimal 
minimum rather than the global optimal minimum. Moreover, increasing the number of layers 
may trigger a sharp convergence of the network, which will reduce the generalization ability 
of the model. According to a previous work [8], the deep residual structure addressed issues 
of gradient vanishing and sharp convergence through a skip connection, which caused gradient 
to directly return to the initial input layer so as to simplify the process of gradient updating by 
back-propagation. By which, the parameters can be kept unchanged, and the residual structure 
can reduce the computational complexity of the model to some extent. All four internal 
convolution blocks of the ULFFN use deep residual structure illustrated in Fig. 2. The input 
of convolution block fuses the output (result after two convolution operations) via a 
summation operation, which is achieved by skipping connection, and effectively avoids the 
degradation of the deep neural network. After fusion, the output performs downsampling 
through convolution by setting the stride to 2 to obtain a larger receptive field and extract more 
abundant semantic information. Each Convolution (Conv) follows the Rectified Linear Unit 
(ReLU) [25] as a nonlinear activation function and Batch Normalization (BN) [26], which not 
only enhances the learning capability of the model, but also keeps a certain gradient, thus 
preventing gradient vanishing or explosion. The VGGNet successfully built a deep CNN by 
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repeatedly stacking convolutional kernels of 3*3, and since then, many other networks have 
set the size of kernels as 3*3 and achieved good results, which has been shown to be an 
efficient and resource-saving convolution method. The receptive field with three 3*3 layers is 
the same as one 7*7 layer and the former only require half of the parameters of the 
latter. Meanwhile, the former consists of three nonlinear operations, while the latter only 
requires one, which means the former has stronger feature learning capacity. In ULFFN, the 
number of output channels of the code unit gradually increases from 128 in the first 
convolution block to 1,024 in the fourth convolution block, and the number of channels of one 
code unit is twice as many as the previous one, which exhibits a progressive increase trend 
from shallower to deeper layers of the network. 

Conv ReLU BN

Conv ReLU BN

Conv ReLU BN

Convolution Block

Convolution Block

Convolution Block
Stride=2

Stride=1

Stride=1

 

Fig. 2. Implementation details of the convolution block. 

3.3 ASPP module 

To image segmentation, large stride-convolution or pooling is used to lower the resolution and 
simultaneously increase the receptive field after that the original image is imported into the 
CNN with the initial ordinary convolution. As the output of the image segmentation preference 
is the pixel level, the downsampled image should be upsampled to the original image size for 
prediction, which brings about information missing due to decreased and increased resolution, 
i.e., frequent downsampling operations, such as convolution with stride > 1 or pooling in the 
deep CNN will result in significantly lower spatial resolution of the feature map, which leads 
to damage image information. In order to overcome the obstacle and effectively generate 
denser feature mapping, downsampling operation is removed from the last code unit in the 
ULFFN, and feature mapping with a high sampling rate is achieved by implementing 
upsampling in the convolutional kernel of subsequent convolutional layers. Upsampling kernel 
involves inserting holes into the non-zero convolutional kernel and such convolution with 
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holes is called atrous convolution. Equations (1) and (2) describe how to calculate the receptive 
field and corresponding convolution kernel in size, respectively. 

 

1 ( 1)n nRF RF k S+ = + − ×                          (1)
 

( 1) ( _ 1)new ori orik k k dilation rate= + − × −                    (2) 

 
where RF   denotes the size of the receptive field, k   is convolutional kernel size, S  
represents the convolutional stride, newk  stands for the size of the convolutional kernel after 
atrous convolution, orik   is original convolutional kernel size, and _dilation rate   is the 
atrous rate. According to equation (1), under the traditional convolution operation with stride 
= 1, three layers of 3*3 convolution is combined to achieve a receptive field of 7*7, and the 
size of the receptive field is linear to layers. According to equation (2), exponentially 
increasing of convolutional kernel makes grow in synch with receptive field of atrous 
convolution.  

The R-CNN [27] uses the ASPP module to resample the convolution features extracted 
from a single scale, which can accurately and effectively classify the region of any scale. For 
the given input, parallel sampling is implemented based on atrous convolution with different 
sampling rates, which equally captures the context information of the image with multiple size 
ratio. The ASPP module has improved the robustness of the network in multi-scale and multi-
category segmentation, as a result of the use of different sampling ratio and receptive fields to 
extract the input features, which leads to the acquisition of the interesting target and context 
information under the conditions of various scales. The working mechanism of the ASPP 
module [18] is as shown in Fig. 3. 

Conv
kernel:3*3
    rate:6 

Conv
kernel:3*3
    rate:12 

Conv
kernel:3*3
    rate:18 

Conv
kernel:3*3
    rate:24

rate=6 rate=12 rate=18 rate=24

Atrous Spatial Pyramid Pooling

Input Feature Map

 

Fig. 3. The working mechanism of the ASPP module 
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We use multiple parallel atrous convolutions with various sampling rates to implement 
ASPP, further process the extracted features in separate branches according to each sampling 
rate, and integrate the results to generate the final result. The specific structure can be observed 
in Fig. 4. 
 

1*1 Conv

3*3 Conv
rate=12

3*3 Conv
rate=18

Global 
Pooling

1*1 Conv

3*3 Conv
rate=6

 
Fig. 4. The structural design of the ASPP module 

3.4 Channel attention module (CAM)  

The attention mechanism focuses on the target areas, while ignoring other unimportant regions 
and involves two steps. The chief operation is to determine which part of the input deserves 
more attention and then to extract features from the key part to obtain important 
information. The importance is determined according to the application scenario, and the 
neural network with the attention mechanism can conduct autonomous learning better. 
Analogous to the selective visual attention mechanism of mankind, attention mechanism is 
more interested in information related to tasks, which contributes the model by redistributing 
the weight of each channel and extracting significant features to improve inference capacity 
of the algorithm, while the consumption of calculation time and memory is hardly increased. 
The attention mechanism has been broadly applied in many tasks [28-30], especially in the 
field of computer vision. In a reported study [31], self-attention is exploited to create a better 
image generator, and another study [32] mainly explores the effectiveness of the non-local 
operation of a video and image on the time-space dimension.  

The attention mechanism in computer vision are mainly categorized into three domains: 
spatial, channel and mixture. The Spatial Transformer Network (STN) [33] is a representative 
spatial attention model and essentially used to locate the target and make some transformation 
or obtain the weight. The Squeeze-and-Excitation Network (SENet) [34], the winner of the 
2017 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), is a classic channel 
attention model, which makes different channels of different weights, thereby preferentially 
allocating resources to attention channels by modeling the importance of each feature channel 
and then enhancing or suppressing different channels for different tasks. The Concerns-Based 
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Adoption Model (CBAM) [35] effectively integrates the attention of spatiality and channel 
and then establish mixed attention model. 

Considering the outstanding performance of the SENet, the ULFFN adopts CAM to 
improve segmentation performance, but unlike the SENet, which mainly uses global average 

pooling ( GAPN ) as squeeze operation, the ULFFN introduces global variance pooling ( GVPN ) 

method, focusing on the global information, as well as the edge information, thereby the model 
can learn more comprehensive information. The original channel data is separately processed 

by GAPN and GVPN , and then the two types of output are fused by concatenation with one 

convolution. After channel activation and sigmoid activation, the new weights are calculated 
and the dot product between the original channel matrix and weight matrix is performed to 
obtain the redistribution of resources among channels, which makes model learning more 
focused. To guarantee the stable gradient updating and the convergence of the loss function, 
the residual branch is added in the CAM. The specific implementation details are shown in 
Fig. 5. 

⊗T
S

T
∧

Channel Activation−

GAPN
C +

 

 

Fig. 5. CAM of the ULFFN 

4. Experiment and results 

4.1 Skin lesion dataset 

The ISIC is an international organization dedicated to the detection of skin cancer and the ISIC 
Challenge focuses on analysis of skin lesions and the detection of skin cancer. This challenge 
includes three major tasks of lesion segmentation, detection of lesion properties and 
classification of skin disease. The ISIC provides the dermoscopy images and corresponding 
references for training of neural networks. ISIC2016 dataset [36] owns 900 images for training 
and 350 images for testing, respectively. While ISIC2017 dataset [37] possesses 2000 images 
for training and 150 images for validating, respectively. 

We use ISIC2016 dataset as the training dataset for the ULFFN, which provides 900 
images in JPEG format for the training of lesion segmentation tasks, including the dermoscopy 
images obtained from different devices in various advanced international clinical centers. 
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During the training process, we randomly chose 200 images from ISIC2016 training data as 
verification dataset. To test robustness and generalization, we evaluated the model on 
ISIC2016 and ISIC2017test dataset. The ISIC2016 test set was a test dataset issued by ISIC in 
2016, and includes 379 biomedical images and corresponding labels. The ISIC2017 test set 
was issued by ISIC in 2017 for segmentation and test of lesion images, and includes 600 
biomedical images and corresponding labels. 

4.2 Evaluation index 

From medical perspective people mainly focus on two criteria: specificity and sensitivity. 
Sensitivity is essentially a recall ratio which indicates whether all true positives have been 
found. Specificity refers to the ratio of false positives. The segmentation of skin lesion is a 
classic binary classification issue, and false prediction results of a model mainly include two 
types: one is false reporting of negative as positive (reporting a disease when there is no 
disease), and the other is false reporting of positive as negative (reporting no disease when 
there is disease). The optimization process is to simultaneously reduce these two types of 
errors which is essentially a process to achieve two categories of errors trade-off, thus it is 
meaningless to simply reduce one type of error while ignoring the other. Under the condition 
of binary classification, there are four possible prediction results:1)True Positive (TP), 2)True 
Negative (TN), 3)False Positive (FP), 4)False Negative (FN). Table 1 expresses the details. 
 

Table 1. The confusion matrix for binary classification 

 Actual value 

Predicted 

value 

 Positive Negative 

Positive TP number FP number 

Negative FN number TN number 

 
From the above confusion matrix, we can obtain the following calculation formulas of 

index: 
 

TP TNAccuracy
TP FP TN FN

+
=

+ + +
                    (3) 

 

TPSensitivity
TP FN

=
+

                        (4) 
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TNSpecificity
FP TN

=
+

                         (5) 

 

TPJSI
TP FP FN

=
+ +

                          (6) 

 

2
2

TPDice
TP FP FN

×
=

× + +
                        (7) 

 
Accuracy refers to the prediction accuracy and stands for the proportion of TP and TN 

samples to the total samples, a higher value indicates higher prediction accuracy, and is defined 
by equation (3). Sensitivity, i.e., the true positive rate, reflects the degree of false report, and 
it is defined by equation (4). Specificity refers to the proportion of accurately predicted 
samples in negative samples, reflecting the degree of false report, and is defined by equation 
(5). The JSI stands for the Jaccard similarity index and applies to compare the similarity 
between sample sets, i.e., the Intersection over Union (IoU). The higher the JSI is, the more 
similar the samples are to each other, and it is defined by equation (6). The Sørensen–Dice 
coefficient which has similar functions as the JSI, is also used to measure the similarity 
between samples, its value is within the range of 0-1, and it is defined by equation (7). All the 
above four indices are introduced to evaluate the performance of the ULFFN.  

4.3 Loss function 

For most semantic segmentation scenarios, leveraging cross entropy to calculate loss for 
gradient update is conducive to a steady training of the model and equation (8) is its 
mathematical expression. For binary classification tasks, a special case of cross-entropy, 
namely binary cross entropy, is used, and its mathematical expression is presented in equation 
(9). However, in scenarios of skin lesion segmentation, the categories of segmentation only 
include foreground and background. Moreover, the number of pixels of the foreground is 
significantly lower than that of the background, i.e., the number of y=0 is remarkably higher 
than the number of y=1in equation (8) and dominates the loss function, which will result in a 
prediction that is heavily biased to the background and generate poor segmentation results. 
Some images that reflect the above peculiarity are shown in Fig. 6. Focal Loss [38] is the 
promotion to cross-entropy loss function and mainly addresses the unbalanced numbers of 
difficult and easy samples, which can also be interpreted as the mining of difficult samples It 
was initially designed to solve the severely unbalanced numbers of positive and negative 
samples in target detection. Parameterized cross entropy can regulate unbalanced samples (see 
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equation (10) for details). Most candidate targets in target detection are easy samples with little 
loss, which account for the majority of targets and control the loss value. Therefore, it is 
considered that easy samples have little effect on improving the model performance and the 
model should focus on the difficult samples. To address this issue, Focal Loss has evolved to 
equation (11). When parameter p→0, the regulatory factor (1-p) is closer to 1, and the loss is 
not affected; when p→1, (1-p) is closer to 0, which will reduce the contribution of easy 
samples to the total loss. When r=0, Focal Loss is the traditional cross entropy, but when r 
increases, the regulatory coefficient will increase accordingly. When r is a fixed value, such 
as p=2, the loss caused by easy samples is 100 times smaller than that caused by the standard 
cross entropy, and when p=0.968, the loss of easy samples is 1,000 times smaller than that of 
the standard cross entropy. However, for difficult samples (p<0.5), the difference is 4 times, 
so the weight of difficult samples is significantly increased, which increases the importance of 
misclassifications. The Dice coefficient is a judgment indicator of segmentation effect and its 
formula is equivalent to IoU between inference area and original area, which tackled the issue 
of extreme imbalance of positive and negative samples via ignoring vast background pixels 
when calculating IoU (see equation (12) for details). Focal Loss and Dice Loss have better 
effects for category imbalance issues, but for balanced samples, they increase the complexity 
of network training and have no advantages in performance, while cross entropy Loss function 
is just the opposite. During the training of our model, the original image is uniformly adjusted 
to the size of 512*512 by a center cropping operation before being input into the network, 
consequently the proportion of pixels of the foreground and background of the original image 
are not significantly different from each other, thus ULFFN adopts cross entropy as loss 
function (See equation 13 for specific calculation formula, where x is the output vector of the 
network and class is the label). 

1
log

M

i i
i

L y p
=

= −∑                       （8） 

 

log 1
( , )

log(1 ) 0
p y

CE p y
p y

− =
= − − =

                 （9） 

 

log 1
( , )

(1 ) log(1 ) 0
p y

CE p y
p y

α
α

− =
= − − − =

              （10） 

 

(1 ) log 1
(1 ) log(1 ) 0fl

p p y
L

p p y

γ

γ

α
α

− − =
= 

− − − =
                （11） 
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21
2Dice

TPL
TP FN FP

= −
+ +

                    （12） 

 

jj

exp( x[ class ])Loss( x,class ) log( ) x[ class ] log( exp( x[ j ]) )
exp( x[ j ])

= − = − + ∑∑
   （13) 

 

    
Fig. 6. Skin lesion image samples (from the ISIC2016 training dataset) 

4.4 Environment setting 

We do not use pre-trained networks such as ResNet as backbone of our model and the training 
is started from scratch. Adam [32] is exploited to optimize network. The original learning rate 
is 1e-4 and reduced 10% every 20 epochs. Our model is trained for 100 epochs and batch-size 
is set to 8. Two NVIDIA GeForce RTX 2080 Ti GPU parallelly trained our model. In order to 
improve the model performance and reduce computation time, the images input into the 
network were pre-cut into the size of 512*512. 

4.5 Results and analysis 

To prove superiority of the proposed model, we conduct comparative analysis of ULFFN with 
classical models including FCN, SegNet [39], U-Net and DeepLabV3+ on ISIC2016 and 
ISIC2017 test datasets. FCN established fully CNN that input images in arbitrary size and 
generated counterpart output with powerful performance. SegNet adopted fully CNN 
architecture for pixel-wise segmentation comprising of an encoder-decoder network. U-Net 
consists of two parts, one contraction path is defined to obtain global information, and the 
other symmetric expansion path is defined to exact location, which can be used for end-to-end 
training with tiny images to receive relatively fast training. DeepLabV3+ integrated merits of 
ASPP and codec-structure to extend DeepLabv3 by appending a decoder to refine results 
illustrated in Fig. 7, ULFFN achieved the highest accuracy and lowest loss among all models 
of comparison. 

javascript:;
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Fig. 7. The changes of all compared methods in accuracy and loss on ISIC2016 test dataset. 

 
According to the results presented by Table 2 and Table 3, ULFFN outperforms 

comparison of approaches on both datasets, and all metrics are higher than other comparative 
models. On ISIC2016 test dataset, the Accuracy, Dice coefficient and JSI values of the ULFFN 
reach 0.91283, 0.93044 and 0.87360, respectively, which are approximately 0.04, 0.03 and 
0.04 higher than the lowest values. On ISIC2017 test dataset, the Accuracy, Dice coefficient 
and JSI values of ULFFN attain 0.89199, 0.9250 and 0.87085, respectively, which are about 
0.04, 0.02 and 0.03 higher than the lowest values. All compared models were trained using 
700 images randomly chosen from ISIC2016 training dataset, while ISIC2017 training dataset 
contains as many as 2,000 images of skin lesions, and its data distribution is vastly different 
from that of the ISIC2016 training dataset. Furthermore, there are 600 images in ISIC2017 test 
dataset, nearly doubling the number of ISIC2016 test dataset. Therefore, the test result on 
ISIC2017 test dataset was a little worse than that on ISIC2016 test dataset. 

We performed ablation experiments on ISIC2016 dataset to analyze the contribution of 
the ASPP and CAM in improving the performance of the ULFFN. Experiments include four 
scenarios: 1) The basic model without integrating the ASPP or CAM (WO-AC). 2) The model 
integrated with the ASPP module (W-A). 3) The model integrated with the CAM (W-C). 4) 
The model integrated with both the ASPP and CAM (W-AC). The specific test results 
presented in Table 4 reveal that the model without ASPP or CAM has the lowest indices, and 
the values of the Accuracy, Dice coefficient and JSI are 0.88924, 0.87978 and 0.82551, 
respectively. On the other hand, the model with both modules has the best indices, and the 
values of the Accuracy, Dice and JSI are as high as 0.92876, 0.93044 and 0.87360, respectively, 
which indicates that the ASPP and CAM can remarkably improve model performance. The 
model with W-A outperforms the model with W-C in various data according to the compared 
test results, which indicates that the ASPP module enhances the effect of the ULFFN more 
than the CAM does. 

The visual segmentation results on ISIC2016 and ISIC2017 test datasets are illustrated in 
Fig. 8 and Fig. 9, respectively. The images shown comprise three parts from left to right: the 
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left one is the original image, the middle one is the label image, and the right one is the 
prediction. The size of both the original image and label image is 512*512 by performing 
center cropping on the original dataset, consistent with the training process. The predictions 
are highly close to the actual labels for different image samples, which confirm the strong 
robustness of the ULFFN. The effect of segmentation is slightly distinct on different test 
datasets, e.g., the metrics are a little higher on ISIC2016 test dataset than those on ISIC2017 
test dataset, which is in line with the gap between models on these two test datasets discussed 
above, and indicates the strong generalization ability of the ULFFN. 

 
Table 2. Performance comparison of the ULFFN and classical semantic segmentation models on 

ISIC2016 test dataset. 

Model Accuracy Dice JSI Sensitivity Specificity 

FCN 0.90876 0.91918 0.85735 0.91333 0.83751 
SegNet 0.90108 0.91374 0.84626 0.89920 0.87160 
U-Net 0.88555 0.90020 0.82628 0.89208 0.80227 

DeepLab v3+ 0.91283 0.92317 0.86085 0.91203 0.88278 
ULFFN 0.92876 0.93044 0.87360 0.92725 0.90040 

 

Table 3. Performance comparison of ULFFN and classical semantic segmentation models on 
ISIC2017 test dataset. 

Model Accuracy Dice JSI Sensitivity Specificity 

FCN 0.87079 0.91115 0.85062 0.91917 0.88366 
SegNet 0.86081 0.90746 0.84237 0.91301 0.87257 
U-Net 0.85062 0.90062 0.83202 0.91259 0.80385 

DeepLab v3+ 0.87579 0.91747 0.85880 0.91619 0.83879 
ULFFN 0.89199 0.92502 0.87085 0.94386 0.92224 

 

Table 4. Performance comparison of the ULFFN models without the ASPP or CAM (WO-AC), with the 
ASPP module (W-A), with the CAM (W-C), and with both the ASPP and CAM (W-AC). 

Module Accuracy Dice JSI Sensitivity Specificity 
WO-AC 0.88924 0.87978 0.82551 0.88703 0.86894 

W-A 0.90924 0.89932 0.84898 0.90782 0.88796 
W-C 0.91632 0.90638 0.85647 0.91033 0.89921 

W-AC 0.92876 0.93044 0.87360 0.92725 0.90040 
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Original image                         Label                        Prediction 

Fig. 8. The result of segmentation of ULFFN on ISIC2016 test dataset. 
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   Original image                         Label                        Prediction        

Fig. 9. The result of segmentation of ULFFN on ISIC2016 test dataset. 

5. Conclusion 

We proposed a new deep learning segmentation model based on the architecture of coding and 
decoding for skin lesion segmentation, which can effectively integrate spatial and semantic 
information during decoding, thus ensuring satisfactory segmentation results. The ASPP and 
CAM are introduced into the network to markedly enhance the robustness of the model during 
multi-scale segmentation. As a result, weights can be assigned to various feature channels, 
making the network training more focused, and improving the performance without extra 
computation time or memory consumption. Extensive experiments performed on public 
datasets ISIC2016 and ISIC2017 demonstrated that the proposed model has outstanding 
performances in skin lesion segmentation, and exceeds classical models of comparison and 
shows great robustness and generalization. 
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