• Title/Summary/Keyword: size exclusion chromatography

Search Result 131, Processing Time 0.038 seconds

Purification and Characterization of a Thermostable Cellobiohydrolase from Fomitopsis pinicola

  • Shin, Keum;Kim, Yoon-Hee;Jeya, Marimuthu;Lee, Jung-Kul;Kim, Yeong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1681-1688
    • /
    • 2010
  • A screening for cellobiohydrolase (CBH) activity was performed and Fomitopsis pinicola KMJ812 was selected for further characterization as it produced a high level of CBH activity. An extracellular CBH was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants. The molecular mass of the F. pinicola CBH was determined to be 64 kDa by SDS-PAGE and by size-exclusion chromatography, indicating that the enzyme is a monomer. The F. pinicola CBH showed a $t_{1/2}$ value of 42 h at $70^{\circ}C$ and catalytic efficiency of $15.8mM^{-1}s^{-1}(k_{cat}/K_m)$ for p-nitrophenyl-${\beta}$-D-cellobioside, one of the highest levels seen for CBH-producing microorganisms. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase family 7. Although CBHs have been purified and characterized from other sources, the F. pinicola CBH is distinguished from other CBHs by its high catalytic efficiency and thermostability.

Characterization of Cellobiohydrolase from a Newly Isolated Strain of Agaricus arvencis

  • Lee, Kyung-Min;Moon, Hee-Jung;Kalyani, Dayanand;Kim, Hoon;Kim, In-Won;Jeya, Marimuthu;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.711-718
    • /
    • 2011
  • A highly efficient cellobiohydrolase (CBH)-secreting basidiomycetous fungus, Agaricus arvensis KMJ623, was isolated and identified based on its morphological features and sequence analysis of internal transcribed spacer rDNA. An extracellular CBH was purified to homogeneity from A. arvencis culture supernatant using sequential chromatography. The relative molecular mass of A. arvencis CBH was determined to be 65 kDa by SDSPAGE and 130 kDa by size-exclusion chromatography, indicating that the enzyme is a dimer. A. arvencis CBH showed a catalytic efficiency ($k_{cat}/K_m$) of 31.8 $mM^{-1}\;s^{-1}$ for p-nitrophenyl-${\beta}$-D-cellobioside, the highest level seen for CBH-producing microorganisms. Its internal amino acid sequences showed significant homology with CBHs from glycoside hydrolase family 7. Although CBHs have been purified and characterized from other sources, A. arvencis CBH is distinguished from other CBHs by its high catalytic efficiency.

Endophytic Bacillus subtilis MJMP2 from Kimchi inhibits Xanthomonas oryzae pv. oryzae, the pathogen of Rice bacterial blight disease

  • Cheng, Jinhua;Jaiswal, Kumar Sagar;Yang, Seung Hwan;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.149-154
    • /
    • 2016
  • An endophytic bacterial strain was isolated from kimchi, a Korean traditional fermented Brassica campestris and identified as Bacillus subtilis MJMP2 based on the 16S rRNA sequence. This strain showed strong antagonistic activity against Xanthomonas oryzae pv. oryzae (Xoo) KACC10331, the pathogen of bacterial rice blight disease, as well as activity against some other rice phytopathogenic fungi. The active compound was purified through size-exclusion chromatography and preparative High-performance liquid chromatography. The molecular weight was determined as m/z 1043 by mass spectroscopy, which is identical to that of iturin A. Furthermore, a crude extract from the culture supernatant of Bacillus subtilis MJMP2 showed inhibitory activity against rice blight disease in both a rice leaf explant assay and a pot assay. The crude extract also enhanced the length of roots of Arabidopsis thaliana. These results suggest that the strain Bacillus subtilis MJMP2 could be used as a biological agent to control rice blight disease.

Characterization of Low-Molecular-Weight Collagen from Korean Native Chicken Feet Hydrolyzed Using Alcalase

  • Heedong Woo;Gyeong A Jeong;Hyunwook Choi;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.656-661
    • /
    • 2023
  • The aims of this study were to optimize the preparation of low-molecular-weight collagen using a proteolytic enzyme (alcalase) derived from the feet of Korean native chickens, and to characterize the process of collagen hydrolysis. Foreign bodies from chicken feet were removed using ultrasonication at 28 kHz with 1.36 kW for more than 25 min. The hydrolytic pattern and molecular weight distribution of enzyme-treated collagen from chicken feet were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography, respectively. Ideally, chicken feet should be treated at 100℃ for 8 h to obtain a high collagen content using hot water extraction. The collagen content of the chicken foot extract was 13.9 g/100 g, and the proportion of low-molecular-weight collagen increased with increasing proteolytic enzyme concentration and reaction time. When treated with 1% alcalase, the average molecular weight of collagen decreased rapidly to 4,929 Da within 5 h and thereafter decreased at a slower rate, reaching 4,916 Da after 7 h. Size exclusion chromatography revealed that low-molecular-weight collagen peptides of approximately 1,000-5,000 Da were obtained after hydrolysis with 1% alcalase for 1 h.

Oxidative Coupling Reaction of Purified Aldrich Humic Acid by Horseradish Peroxidase (산화환원효소에 의한 휴믹산의 산화중합반응)

  • Jee, Sang-Hyun;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1054-1062
    • /
    • 2010
  • Oxidative coupling reactions of humic substances (HS) can be catalyzed by a variety of natural extracellular enzymes and metal oxides. In this study, property changes of HS induced by a natural enzyme, horseradish peroxidase (HRP), and the effect of it to microfiltration (MF) were investigated. PAHA was transformed by oxidative coupling reaction with HRP and hydrogen peroxide ($H_2O_2$), verifying the catalytic effects of the HRP. Size exclusion chromatography (SEC) revealed that weight-average molecular weight (MWw) of PAHA was proportionally increased with the dosages of HRP and $H_2O_2$, indicating the transform action of HS into larger and complex molecules. An increase in the conformational stability of HS was achieved through the promotion of intermolecular covalent bondings between heterogeneous humic molecules. Spectroscopic analysis (fluorescence and infrared spectroscopy) proved that functional groups were transformed by the reaction. Additionally, HS and transformed products were undergone microfiltration (MF) to examine the treatment potential of them in a water treatment facility. Original HS could not be removed by MF but larger molecules of transformed products could be removed. Meanwhile, transformed products caused more fouling on the filtration than original HS. This results proved that natural organic matter (NOM) can be removed by MF after its increase in molecular size by oxidative coupling reaction.

Anti-Angiogenesis Effect and Cytotoxicity of Enterobacteria Isolated from Fusiform Fish

  • Lim, Jong-Kwon;Song, Min-Gyu;Shin, Jin-Hyuk;Lee, Se-Young;Kim, Jong-Deog
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.158-162
    • /
    • 2005
  • Enterobacteria, named ${\lambda}-bacteria$ isolated from fusiform fish, have strong anti-angiogenesis effect. ${\lambda}-28$ species bore higher anti-angiogenesis effect. Cultured liquid was performed salting out, dialysed and freezed dried. This sample was executed size exclusion chromatography with fraction collector. Anti-angiogenesis, cytotoxicity, and SDS-PAGE were carried out with fraction number. ${\lambda}-28$ species was lower toxicity against HUVECs and effective band was conformed with SDS-PAGE.

  • PDF

Identification and Characterization of Nitric Oxide Synthase in Salmonella typhimurium

  • Choi, Don-Woong;Oh, Hye-Young;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.407-412
    • /
    • 2000
  • The presence of the nitric oxide synthase (NOS) enzyme from Salmonella typhimurium (S. typhimurium) was identified by measuring radiolabeled L-$[^3H]$citrulline and NO, and Western blot analysis. NOS was partially purified by both Mono Q ion exchange and Superose 12HR size exclusion column chromatography, sequentially. The molecular weight of NOS was estimated to be 93.3 kDa by Western blot analysis. The enzyme showed a significant dependency on the typical NOS cofactors; an apparent Km for L-arginine of 34.7 mM and maximum activity between $37^{\circ}C$ and $43^{\circ}C$. The activity was inhibited by NOS inhibitors such as aminoguanidine and $N^{G}$ $N^{G}$-dimethyl-L-arginine. taken together, partially purified NOS in S. typhimurium is assumed to be a different isoform of mammalian NOSs.OSs.

  • PDF

Crystal Structure of a Maltogenic Amylase: Insights into a Catalytic Versatility

  • Oh, Sang-Taek;Cha, Sun-Shin;Kim, Hyun-Ju;Kim, Tae-Jip;Cho, Hyun-Soo;Park, Kwan-Hwa;Oh, Byung-Ha
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.35-35
    • /
    • 1999
  • Amylases catalyze the hydrolysis of starch material and play central roles in carbohydrate metabolism. The structure and a size exclusion column chromatography proved that the enzyme is a dimer in solution. The N -terminal segment of the enzyme folds into a distinct domain and comprises the enzyme active site together with the central (${\alpha}$/ ${\beta}$)$\sub$8/ barrel of the adjacent subunit.(omitted)

  • PDF

A Method for Determining Molecular Weights of Block Copolymers by Gel Permeation Chromatography

  • Sohn, Jeong-In;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.4
    • /
    • pp.140-145
    • /
    • 1984
  • A theory is given for determining the molecular weights of block copolymers from the experimental elution volume in GPC. Interaction effect between a sample of block copolymer and a column packing material as well as the size effect are separately considered for the first time applying the partial exclusion mechanism proposed by Dawkins. The molecular weight determination shows 6${\%}$ standard-deviation from the molecular weights measured by an osmometric method for eight block copolymers, which is much more improved result than other methods, e.g., the universal plot method (13 ${\%}$) and the Runyon's method (12 ${\%}$). The reason which explains the better result is that our theory takes into account the interaction effect correctly.

Crystal Structure of the Pneumococcal Vancomycin-Resistance Response Regulator DNA-Binding Domain

  • Park, Sang-Sang;Lee, Sangho;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.179-185
    • /
    • 2021
  • Vancomycin response regulator (VncR) is a pneumococcal response regulator of the VncRS two-component signal transduction system (TCS) of Streptococcus pneumoniae. VncRS regulates bacterial autolysis and vancomycin resistance. VncR contains two different functional domains, the N-terminal receiver domain and C-terminal effector domain. Here, we investigated VncR C-terminal DNA binding domain (VncRc) structure using a crystallization approach. Crystallization was performed using the micro-batch method. The crystals diffracted to a 1.964 Å resolution and belonged to space group P212121. The crystal unit-cell parameters were a = 25.71 Å, b = 52.97 Å, and c = 60.61 Å. The structure of VncRc had a helix-turn-helix motif highly similar to the response regulator PhoB of Escherichia coli. In isothermal titration calorimetry and size exclusion chromatography results, VncR formed a complex with VncS, a sensor histidine kinase of pneumococcal TCS. Determination of VncR structure will provide insight into the mechanism by how VncR binds to target genes.