Browse > Article
http://dx.doi.org/10.4014/jmb.1102.02001

Characterization of Cellobiohydrolase from a Newly Isolated Strain of Agaricus arvencis  

Lee, Kyung-Min (Department of Chemical Engineering, Konkuk University)
Moon, Hee-Jung (Department of Chemical Engineering, Konkuk University)
Kalyani, Dayanand (Department of Chemical Engineering, Konkuk University)
Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
Kim, In-Won (Department of Chemical Engineering, Konkuk University)
Jeya, Marimuthu (Department of Chemical Engineering, Konkuk University)
Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 711-718 More about this Journal
Abstract
A highly efficient cellobiohydrolase (CBH)-secreting basidiomycetous fungus, Agaricus arvensis KMJ623, was isolated and identified based on its morphological features and sequence analysis of internal transcribed spacer rDNA. An extracellular CBH was purified to homogeneity from A. arvencis culture supernatant using sequential chromatography. The relative molecular mass of A. arvencis CBH was determined to be 65 kDa by SDSPAGE and 130 kDa by size-exclusion chromatography, indicating that the enzyme is a dimer. A. arvencis CBH showed a catalytic efficiency ($k_{cat}/K_m$) of 31.8 $mM^{-1}\;s^{-1}$ for p-nitrophenyl-${\beta}$-D-cellobioside, the highest level seen for CBH-producing microorganisms. Its internal amino acid sequences showed significant homology with CBHs from glycoside hydrolase family 7. Although CBHs have been purified and characterized from other sources, A. arvencis CBH is distinguished from other CBHs by its high catalytic efficiency.
Keywords
Catalytic efficiency; cellobiohydrolase; enzyme production; Agaricus arvencis; glycoside hydrolase;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Teeri, T. T. 1997. Crystalline cellulose degradation: New insight into the function of cello-biohydrolases. Trends Biotechnol. 15: 160-167.   DOI   ScienceOn
2 Teeri, T. T., P. Lehtovaara, S. Kauppinen, I. Salovuori, and J. Knowles. 1987. Homologous domains in Trichoderma reesei cellulolytic enzymes: Gene sequence and expression of cellobiohydrolase II. Gene 51: 43-52.   DOI   ScienceOn
3 Tuohy, M. G., D. J. Walsh, P. G. Murray, M. Claeyssens, M. M. Cuffe, A. V. Savage, and M. P. Coughlan. 2002. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim. Biophys. Acta 1596: 366-380.   DOI   ScienceOn
4 White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications Academic Press, Inc., New York, NY.
5 Lin, J., B. Pillay, and S. Singh. 1999. Purification and biochemical characterization of $\beta$-glucosidase from a thermophilic fungus, Thermomyces lanuginosus. Biotechnol. Appl. Biochem. 30: 81- 87.
6 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
7 Ohnishi, Y., M. Nagase, T. Ichiyanagi, Y. Kitamoto, and T. Aimi. 2007. Transcriptional regulation of two cellobiohydrolase encoding genes (cel1 and cel2) from the wood-degrading basidiomycete Polyporus arcularius. Appl. Microbiol. Biotechnol. 76: 1069-1078.   DOI   ScienceOn
8 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
9 Barros, L., P. Baptista, D. M. Correia, S. Casal, B. Oliveira, and I. C. F. R. Ferreira. 2007. Fatty acid and sugar compositions and nutritional value of five wild edible mushrooms. Food Chem. 105: 140-145.   DOI   ScienceOn
10 Bayer, E. A., H. Chanzy, R. Lamed, and Y. Shoham. 1998. Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8: 548-557.   DOI   ScienceOn
11 Bukhtojarov, F. E., B. B. Ustinov, T. N. Salanovich, A. I. Antonov, A. V. Gusakov, O. N. Okunev, and A. P. Sinitsyn. 2004. Cellulase complex of the fungus Chrysosporium lucknowense: Isolation and characterization of endoglucanases and cellobiohydrolases. Biochemistry 69: 542-551.
12 Deshpande, M. V., K. E. Eriksson, and L. G. Pettersson. 1984. An assay for selective determination of exo-1,4-b-glucanases in a mixture of cellulolytic enzymes. Anal. Biochem. 138: 481-487.   DOI   ScienceOn
13 Jia, J., P. S. Dyer, and J. F. Buswell. 1999. Cloning of the CBHI and CBHII genes involved in cellulose utilization by the straw mushroom Volvariella volvacea. Mol. Gen. Genet. 261: 985- 993.   DOI   ScienceOn
14 Doran-Peterson, J., A. Jangid, S. K. Brandon, E. DeCrescenzo- Henriksen, B. Dien, and L. O. Ingram. 2009. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production. Methods Mol. Biol. 581: 263-280.
15 Edwards, I. P., R. A. Upchurch, and R. Z. Donald. 2008. A classification of glycosyl hydrolases based on amino acid sequence similarity. Appl. Environ. Microbiol. 74. 74: 3481- 3489.
16 Gusakov, A. V., A. P. Sinitsyn, T. N. Salanovich, F. E. Bukhtojarov, A. V. Markov, B. B. Ustinov, C. Van Zeijl, P. Punt, and R. Burlingame. 2005. Purification, cloning and characterization of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzyme Microb. Technol. 36: 57-69.   DOI   ScienceOn
17 Haakana, H., A. Miettinen-Oinonen, V. Joutsjoki, A. Mantyla, P. Suominen, and J. Vehmaanpera. 2004. Cloning of cellulose genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzyme Microb. Technol. 34: 159-167.   DOI   ScienceOn
18 Hamada, N., K. Ishikawa, N. Fuse, R. Kodaira, M. Shimosaka, Y. Amano, T. Kanda, and M. Okazaki. 1999. Purification characterization and gene analysis of exo-cellulase II (Ex-2) from the white rot basidiomycete Irpex lacteus. J. Biosci. Bioeng. 87: 442-451.   DOI   ScienceOn
19 Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarity. Biochem. J. 280: 309- 316.   DOI
20 Hong, J., H. Tamaki, K. Yamamoto, and H. Kumagai. 2003. Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl. Microbiol. Biotechnol. 63: 42-50.   DOI   ScienceOn
21 Kajisa, T., K. Igarahi, and M. Samejima. 2009. The genes encoding glycoside hydrolase family 6 and 7 cellulases from the brown-rot fungus Coniphora puteana. J. Wood Sci. 55: 376- 380.   DOI   ScienceOn
22 Liete, R. S. R., E. Gomes, and R. Da-Silva. 2007. Characterization of $\beta$-glucosidases from a mesophilic Aureobasidium pullulana and thermophilic Thermoascus aurantiacus. Process Biochem. 42: 1101-1106.   DOI   ScienceOn
23 Percival Zhang, Y. H., M. E. Himmel, and J. R. Mielenz. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481.   DOI   ScienceOn
24 Wolfe, R. S., R. K. Thauer, and N. Pfennig. 1987. A capillary racetrack method for isolation of magnetotactic bacteria. FEMS Microbiol. Lett. 45: 31-35.   DOI   ScienceOn
25 Rouau, X. and E. Odier. 1986. Purification and properties of 2 enzymes from Duchomitus squalens which exhibit both cellobiohydrolase and xylanase activity. Carbohydr. Res. 145: 279-292.   DOI   ScienceOn
26 Schmidhalter, D. R. and G. Canevascini. 1993. Purification and characterization of two exo-cellobiohydrolases from the brownrot fungus Coniophora puteana (Schum ex Fr) Karst. Arch. Biochem. Biophys. 300: 551-558.   DOI   ScienceOn
27 Lahjouji, K., R. Storms, Z. Xiao, K. B. Joung, Y. Zheng, J. Powlowski, A. Tsang, and L. Varin. 2007. Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Appl. Microbiol. Biotechnol. 75: 337-346.   DOI   ScienceOn
28 Lee, C. C., D. W. Wong, and G. H. Robertson. 2001. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Microbiol. Lett. 205: 355-360.   DOI   ScienceOn
29 Li, Y. L., D. C. Li, and F. C. Teng. 2006. Purification and characterization of a cellobiohydrolase from the thermophilic fungus Chaetomium thermophilus CT2. Wei Sheng Wu Xue Bao 46: 143-146.
30 Limam, F., S. E. Chaabouni, R. Ghrir, and N. Marzouki. 1995. Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: Purification and properties. Enzyme Microb. Technol. 17: 340- 346.   DOI   ScienceOn
31 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685.   DOI   ScienceOn
32 Koch, A., C. T. Weigel, and G. Schulz. 1993. Cloning, sequencing, and heterologous expression of a cellulase-encoding cDNA (cbh1) from Penicillium janthinellum. Gene 124: 57-65.   DOI   ScienceOn