• Title/Summary/Keyword: situ measurement

Search Result 613, Processing Time 0.035 seconds

Preliminary Results of Marine Heat Flow Measurements in the Chukchi Abyssal Plain, Arctic Ocean, and Constraints on Crustal Origin (북극 척치 해저평원의 해양지열관측 초기결과와 지각기원에 대한 의미)

  • Kim, Young-Gyun;Hong, Jong Kuk;Jin, Young Keun;Jang, Minseok;So, Byung Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.113-126
    • /
    • 2022
  • The tectonic history of the Chukchi Abyssal Plain in the Amerasia Basin, Arctic Ocean, has not been fully explored due to the harsh conditions of sea ice preventing detailed observation. Existing models of the tectonic history of the region provide contrasting interpretation of the timing of formation of the crust (Mesozoic to Cenozoic), crust type (from hyper-extended continental crust to oceanic crust), and formation process (from parallel/fan-shaped rifting to transformation faulting). To help determine the age of the oceanic crust, the geothermal gradient was measured at three stations in the south of abyssal plain at depth of 2,160-2,250 m below sea level. Heat flow measurement stations were located perpendicular to the spreading axis over a 40 km-long transect. In-situ thermal conductivity measurement, corrected by the laboratory test, gave observed marine heat flows of 55 to 61 mW/m2. All measurements were taken during Arctic expeditions in 2018 (ARA09C expedition) and 2021 (ARA12C expedition) by the Korean ice-breaking research vessel (IBRV) Araon. Given the assumption of oceanic crust, the results correspond to formation in the Late Cretaceous (Mesozoic). The inferred age supports the hypothesis of formation activated by the opening of the Makarov Basin during the Late Mesozoic-Cenozoic. This would make it contemporaneous with rifting of the Chukchi Border Land immediately east of the abyssal plain. The heat flow data indicate the base of the gas hydrate stability zone is located 332-367 m below the seafloor, this will help to identify the gas hydrate-related bottom simulating reflector in the future seismic survey, as already identified on the Chukchi Plateau. Further geophysical surveys, including heat flow measurements, are required to increase our understanding of the formation process and thermal mantle structure of the abyssal plain.

Development of Extracting Solution for Soil Chemical Analysis Suitable to Integrated Ion-selective Micro-electrodes (집적형 이온선택성 미세전극 센서에 적합한 토양화학 분석용 침출액 종 개발)

  • Shin, Kook-Sik;Lim, Woo-Jin;Lee, Sang Eun;Lee, Jae Seon;Cha, Geun Sig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.513-521
    • /
    • 2009
  • The primary goal of this research was to develop an optimized analytical procedure for soil analysis based on ion-selective microelectrodes for agricultural purposes, which can perform on-site measurement of various ions in soil easily and rapidly. For the simple and rapid on-site diagnosis, an analysis of soil chemicals was performed employing a multicomponent-in-situ-extractant and an evaluation of ionselective microelectrodes were conducted through the regressive correlation method with a standard analytical approach widely employed in this area. Examination of sensor responses between various soil nutrient extractants revealed that 0.01M HCl and 1M LiCl provided the most ideal Nernstian response. However, 1M LiCl deteriorated the selective response for analytes due to high concentration (1M) of lithium cation. Thus, employing either 0.1M HCl as an extractant followed by 10 times dilution, or 0.01M HCl as an extractant without further dilution was chosen as the optimal extractant composition. A study of regressive correlation between results from ion-selective microelectrodes and those from the standard analytical procedure showed that analyses of $K^+$, $Na^+$, $Ca^{2+}$, and $NO_3{^-}$ showed the excellent consistency between two methods. However, the response for $NH_4{^+}$ suffered the severe interference from $K^+$. In addition, the selectivity for $Mg^{2+}$ over $Ca^{2+}$ was not sufficient enough since available ionophores developed so far do not provide such a high selectivity for $Mg^{2+}$. Therefore, as an agricultural on-site diagnostic instrument, the device in development requires further research on $NH_4{^+}$ analysis in the soil sample, development of $Mg^{2+}$-selective ionophore, and more detailed study focused on potassium, one of the most important plant nutrients.

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF

L-band SAR-derived Sea Surface Wind Retrieval off the East Coast of Korea and Error Characteristics (L밴드 인공위성 SAR를 이용한 동해 연안 해상풍 산출 및 오차 특성)

  • Kim, Tae-Sung;Park, Kyung-Ae;Choi, Won-Moon;Hong, Sungwook;Choi, Byoung-Cheol;Shin, Inchul;Kim, Kyung-Ryul
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.477-487
    • /
    • 2012
  • Sea surface winds in the sea off the east coast of Korea were derived from L-band ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar) data and their characteristics of errors were analyzed. We could retrieve high-resolution wind vectors off the east coast of Korea including the coastal region, which has been substantially unavailable from satellite scatterometers. Retrieved SAR-wind speeds showed a good agreement with in-situ buoy measurement by showing relatively small an root-mean-square (RMS) error of 0.67 m/s. Comparisons of the wind vectors from SAR and scatterometer presented RMS errors of 2.16 m/s and $19.24^{\circ}$, 3.62 m/s and $28.02^{\circ}$ for L-band GMF (Geophysical Model Function) algorithm 2009 and 2007, respectively, which tended to be somewhat higher than the expected limit of satellite scatterometer winds errors. L-band SAR-derived wind field exhibited the characteristic dependence on wind direction and incidence angle. The previous version (L-band GMF 2007) revealed large errors at small incidence angles of less than $21^{\circ}$. By contrast, the L-band GMF 2009, which improved the effect of incidence angle on the model function by considering a quadratic function instead of a linear relationship, greatly enhanced the quality of wind speed from 6.80 m/s to 1.14 m/s at small incident angles. This study addressed that the causes of wind retrieval errors should be intensively studied for diverse applications of L-band SAR-derived winds, especially in terms of the effects of wind direction and incidence angle, and other potential error sources.

Diversity, Spatial Distribution and Ecological Characteristics of Relict Forest Trees in South Korea (한국 산림유존목의 다양성, 공간 분포 및 생태 특성)

  • CHO, Hyun-Je;Lee, Cheol-Ho;Shin, Joon-Hwan;Bae, Kwan-Ho;Cho, Yong-Chan;Kim, Jun-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.401-413
    • /
    • 2016
  • Forest resources utilization and variable disturbance history have been affected the rarity and conservation value of forest relict trees, which served as habitat for forest biodiversity, important carbon stock and cultural role include human and natural history in South Korea. This study was conducted to establish the baseline data for forest resources conservation by clarifying species diversity, spatial distribution and ecological characteristics (individual and habitat) of forest relict trees (DBH > 300 cm) based on the data getting from mountain trail, high resolution aerial photos and field professionals and field survey. As results, 54 taxa (18 family 32 genus 48 species 1 subspecies 3 variety and 2 form) as about 22% of tree species in Korea was identified in the field. 837 individuals of forest relict trees were observed and the majority of the trees was in Pinaceae, deciduous Fagaceae and Rosaceae, which families are abundant in population diversity. High elevation area was important to relict trees as mean altitudinal distribution was 1,200 m a.s.l as likely affected by human activity gradients and mid-steep slope and North aspect was important environment for the trees remain. Many individuals exhibited 'damage larger branch' (55.6%) and consequent relatively lower mean canopy coverages (below 80%). Synthetically, present diversity and abundance of relict forest trees in South Korea were the result of complex process among climate variation, local weather and biological factors and the trees of big and old were estimated to important forest biodiversity elements. In the future, clarifying the role and function of relict trees in forest ecosystem, in- and ex- situ programmes for important trees and habitat, and activities for building the background of conservation policy such as "Guideline for identifying and measurement of forest relict trees".

Correlation Coefficients between Pine Mushroom Emergence and Meteorological Elements in Yangyang County, Korea (양양지역 송이 발생과 기상요소의 상관관계)

  • Shim, Kyo-Moon;Ko, Cheol-Soon;Lee, Yang-Soo;Kim, Gun-Yeob;Lee, Jeong-Taek;Kim, Soon-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2007
  • The relationships between pine mushroom emergence and meteorological factors were analyzed with three years (from 2003 to 2005) of measurement data at Yangyang site, in order to evaluate the effect of micrometeorological environment on pine mushroom production. fine mushroom was daily monitored and collected in the survey area during the its producing period (approximately one month). Pine mushroom production was highest in 2005 with the meteorological conditions of high temperature and frequent rainfalls in October. The production was lowest in 2004 due to dry conditions from mid September to late October, The meterological factors related to humidity (i.e., relative humidity, soil water content, and precipitation) were better correlated than those related to temperature (i.e., air and soil temperature, soil heat flux and solar radiation) with pine mushroom production. However, all of the correlation coefficients were statistically insignificant with values ranging from 0.15 to 0.46. Such poor correlations may be attributed to various other environmental conditions (e.g., topography, soil, vegetation, other fungi, the relationship between pine mushroom and pine forest) affecting pine mushroom production. We found that a mycelium requires a stimulation of low temperature (of three-day moving average) below $19.5^{\circ}C$, in order to farm a mushroom primordium which grows to pine mushroom after 16 days from the stimulation. We also found that the pine mushroom production ended when the soil temperature (of three-day moving average) fell below $14.0^{\circ}C$.

Seasonal Variation of Thermal Effluents Dispersion from Kori Nuclear Power Plant Derived from Satellite Data (위성영상을 이용한 고리원자력발전소 온배수 확산의 계절변동)

  • Ahn, Ji-Suk;Kim, Sang-Woo;Park, Myung-Hee;Hwang, Jae-Dong;Lim, Jin-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.52-68
    • /
    • 2014
  • In this study, we investigated the seasonal variation of SST(Sea Surface Temperature) and thermal effluents estimated by using Landsat-7 ETM+ around the Kori Nuclear Power Plant for 10 years(2000~2010). Also, we analyzed the direction and range of thermal effluents dispersion by the tidal current and tide. The results are as follows, First, we figured out the algorithm to estimate SST through the linear regression analysis of Landsat DN(Digital Number) and NOAA SST. And then, the SST was verified by compared with the in situ measurement and NOAA SST. The determination coefficient is 0.97 and root mean square error is $1.05{\sim}1.24^{\circ}C$. Second, the SST distribution of Landsat-7 estimated by linear regression equation showed $12{\sim}13^{\circ}C$ in winter, $13{\sim}19^{\circ}C$ in spring, and $24{\sim}29^{\circ}C$ and $16{\sim}24^{\circ}C$ in summer and fall. The difference of between SST and thermal effluents temperature is $6{\sim}8^{\circ}C$ except for the summer season. The difference of SST is up to $2^{\circ}C$ in August. There is hardly any dispersion of thermal effluents in August. When it comes to the spread range of thermal effluents, the rise range of more than $1^{\circ}C$ in the sea surface temperature showed up to 7.56km from east to west and 8.43km from north to south. The maximum spread area was $11.65km^2$. It is expected that the findings of this study will be used as the foundational data for marine environment monitoring on the area around the nuclear power plant.

Measurement of Net Photosynthetic Rates in Intertidal flats of Ganghwa-gun and Incheon North Harbor using Oxygen Microsensors (산소 미세전극을 이용한 강화군과 인천 북항 조간대 갯벌의 순광합성률 측정)

  • Hwang, Chung-Yeon;Cho, Byung-Cheol
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • To find out temporal variations of net photosynthetic rate (NPR) of intertidal flats, we measured oxygen microprofiles in sediments with oxygen microsensors 4 times from December 2003 to June 2004. The study areas were the intertidial flats in Janghwa-ri and Dongmak-ri, located on the southwestern and the southern parts of Ganghwa-gun, respectively, and in Incheon North Harbor where the content of organic matter was relatively high. During the investigation, oxygen penetration depths in the tidal flats of Janghwa-ri and Dongmak-ri were high in December (mean values of 4.0-4.1 mm). Thereafter, the oxygen penetration depths declined to mean values of 2.2-2.8 mm and 1.6-1.8 mm in the two tidal flats. Interestingly, the oxygen penetration depths in the Incheon North Harbor tidal flat showed a lower range $(0.8{\pm}0.3\;mm;\;mean{\pm}1SD)$ over the period. The maximum NPR in the Dongmak-ri tidal flat was found in March $(11.1{\pm}2.8\;mmol\;O_2\;m^{-2}\;h^{-1})$, and those In Janghwa-ri $(6.1{\pm}4.1\;mmol\;O_2\;m^{-2}\;h^{-1})$ and Incheon North Harbor $(6.4{\pm}1.4\;mmol\;O_2\;m^{-2}\;h^{-1})$ were observed in May. During the period when NPR was most active, the highest oxygen concentration was found at 0.1-0.5 mm depth below the surface sediment, and was on average 1.8-3.2 times higher than the air-saturated oxygen concentration in the overlying seawater. Although we took into account of low in situ light intensity $(400{\mu}Einst\;m^{-2}\;s^{-1})$ during the investigation in June, NPR in the 3 study areas decreased significantly to less than $0.2\;mmol\;O_2\;m^{-2}\;h^{-1})$. Thus, temporal variations of NPR were somewhat different among the tidal flats. Generally, benthic primary producers inhabiting in the uppermost 0.5 mm of the sediment showed a peak photosynthetic activity in the study areas in spring. This is the first domestic report on photosynthetic rates of benthic microflora in the tidal flats with oxygen microsensors, and the use of the microsensor can be widely applied to measurements of benthic primary production of a tidal flat and the oxygen consumption rate of surficial sediments.

Applicability of Vegetation Index and SPAD Reading to Nondestructive Diagnosis of Rice Growth and Nitrogen Nutrition Status (식생지수와 SPAD를 이용한 벼 생육 및 질소영양상태의 비파괴적 진단 가능성 검토)

  • Kim Min-Ho;Shin Jin-Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.369-377
    • /
    • 2005
  • Precise application of topdressing nitrogen (N) fertilizer is indispensible for securing high yield and good quality of rice and minimizing N losses to the environment as well. For precise N management, growth and nitrogen nutrition status (NNS) should be diagnosed rapidly and accurately. The objective of the study was to evaluate the applicability of vegetation index (VI) calculated from hyperspectral canopy reflectance measurement and SPAD reading to nondestructive in situ diagnosis of growth and NNS of rice. Canopy reflectance, SPAD read­ing, growth parameters, and NNS characteristics were measured from various N treatments to evaluate the relationships among them for two cropping seasons from 2001 to 2002. The correlation coefficient of VIs with variables of growth and NNS increased positively as rice canopy became more closed. Regardless of growth stages, VIs had significantly high correlations with LAI, shoot dry weight (DW), shoot N content and nitrogen nutrition index (NNI). Those correlation coefficients increased steadily before heading stage as rice grew up. However, tiller number and leaf N concentration showed significantly high correlations with VIs only at and after panicle initiation stage (PIS). Among the VIs, RVIgreen had significantly higher correlation with the measured parameters than the other VIs: it showed correlation coefficients greater than 0.8 with leaf and shoot N concentration and DW, and much higher coefficients greater than 0.9 with LAI, shoot N content, and NNI. At LAI of below 2.5, VIs had non-significant or low correlations with the growth and NNS indicators due to the background effects. SPAD reading had significantly high correlation with leaf N concentration and NNI at each growth stage. In addition, it had significant correlations with variables of growth and NNS at PIS and booting stage, particularly, at booting stage. Though SPAD reading had a significantly high correlation value at a given growth stage in each year, it showed very weak relationship with variables of growth and NNS when pooled across growth stages and years. In conclusion, RVIgreen was found to be the most reliable VI to estimate the growth and NNS of rice around at PIS, but SPAD reading had much limitations.

Analysis of Thermal Environment Characteristics by Spatial Type using UAV and ENVI-met (UAV와 ENVI-met을 활용한 공간 유형별 열환경 특성 분석)

  • KIM, Seoung-Hyeon;PARK, Kyung-Hun;LEE, Su-Ah;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.28-43
    • /
    • 2022
  • This study classified UAV image-based physical spatial types for parks in urban areas of Changwon City and analyzed thermal comfort characteristics according to physical spatial types by comparing them with ENVI-met thermal comfort results. Physical spatial types were classified into four types according to UAV-based NDVI and SVF characteristics. As a result of ENVI-met thermal comfort, the TMRT difference between the tree-dense area and other areas was up to 30℃ or more, and it was 19. 6℃ at 16:00, which was the largest during the afternoon. As a result of analyzing UAV-based physical spatial types and thermal comfort characteristics by time period, it was confirmed that the physical spatial types with high NDVI and high SVF showed a similar to thermal comfort change patterns by time when using UAV, and the physical spatial types with dense trees and artificial structures showed a low correlation to thermal comfort change patterns by time when using UAV. In conclusion, the possibility of identifying the distribution of thermal comfort based on UAV images was confirmed for the spatial type consisting of open and vegetation, and the area adjacent to the trees was found to be more thermally pleasant than the open area. Therefore, in the urban planning stage, it is necessary to create an open space in consideration of natural covering materials such as grass and trees, and when using artificial covering materials, it is judged that spatial planning should be done considering the proximity to trees and buildings. In the future, it is judged that it will be possible to quickly and accurately identify urban climate phenomena and establish urban planning considering thermal comfort through ground LIDAR and In-situ measurement-based UAV image correction.