Browse > Article
http://dx.doi.org/10.9720/kseg.2022.1.113

Preliminary Results of Marine Heat Flow Measurements in the Chukchi Abyssal Plain, Arctic Ocean, and Constraints on Crustal Origin  

Kim, Young-Gyun (Research Institute for Earth Resources, Kangwon National University)
Hong, Jong Kuk (Division of Earth Sciences, Korea Polar Research Institute)
Jin, Young Keun (Division of Earth Sciences, Korea Polar Research Institute)
Jang, Minseok (Department of Geophysics, Kangwon National University)
So, Byung Dal (Department of Geophysics, Kangwon National University)
Publication Information
The Journal of Engineering Geology / v.32, no.1, 2022 , pp. 113-126 More about this Journal
Abstract
The tectonic history of the Chukchi Abyssal Plain in the Amerasia Basin, Arctic Ocean, has not been fully explored due to the harsh conditions of sea ice preventing detailed observation. Existing models of the tectonic history of the region provide contrasting interpretation of the timing of formation of the crust (Mesozoic to Cenozoic), crust type (from hyper-extended continental crust to oceanic crust), and formation process (from parallel/fan-shaped rifting to transformation faulting). To help determine the age of the oceanic crust, the geothermal gradient was measured at three stations in the south of abyssal plain at depth of 2,160-2,250 m below sea level. Heat flow measurement stations were located perpendicular to the spreading axis over a 40 km-long transect. In-situ thermal conductivity measurement, corrected by the laboratory test, gave observed marine heat flows of 55 to 61 mW/m2. All measurements were taken during Arctic expeditions in 2018 (ARA09C expedition) and 2021 (ARA12C expedition) by the Korean ice-breaking research vessel (IBRV) Araon. Given the assumption of oceanic crust, the results correspond to formation in the Late Cretaceous (Mesozoic). The inferred age supports the hypothesis of formation activated by the opening of the Makarov Basin during the Late Mesozoic-Cenozoic. This would make it contemporaneous with rifting of the Chukchi Border Land immediately east of the abyssal plain. The heat flow data indicate the base of the gas hydrate stability zone is located 332-367 m below the seafloor, this will help to identify the gas hydrate-related bottom simulating reflector in the future seismic survey, as already identified on the Chukchi Plateau. Further geophysical surveys, including heat flow measurements, are required to increase our understanding of the formation process and thermal mantle structure of the abyssal plain.
Keywords
marine heat flow; origin of crust; IBRV Araon; Chukchi Abyssal Plain; Arctic Ocean;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hegewald, A., Jokat, W., 2013, Tectonic and sedimentary structures in the northern Chukchi region, Arctic Ocean, Journal of Geophysical Research: Solid Earth, 118(7), 3285-3296.   DOI
2 Hutnak, M., Fisher, A.T., 2007, Influence of sedimentation, local and regional hydrothermal circulation, and thermal rebound on measurements of seafloor heat flux, Journal of Geophysical Research: Solid Earth, 112(B12).
3 Hyndman, R.D., Erickson, A.J., Von Herzen, R.P., 1974, Geothermal measurements on DSDP Leg 26, Initial Reports of the Deep Sea Drilling Project, 26, 451-463.
4 Ilhan, I., Coakley, B.J., 2018, Meso-Cenozoic evolution of the southwestern Chukchi Borderland, Arctic Ocean, Marine and Petroleum Geology, 95, 100-109.   DOI
5 Jin, Y.K., Onboard Ship Scientific Party, 2017, ARA07C Cruise Report: 2016 Korea-Russia-Germany East Siberian Sea research program, BSPM16050-080-3, Korea Polar Research Institute, 103p.
6 Kim, Y.G., Lee, S.M., Matsubayashi, O., 2010, New heat flow measurements in the Ulleung Basin, East Sea (Sea of Japan): Relationship to local BSR depth, and implications for regional heat flow distribution, Geo-Marine Letters, 30(6), 595-603.   DOI
7 Kashubin, S.N., Petrov, O.V., Artemieva, I.M., Morozov, A.F., Vyatkina, D.V., Golysheva, Yu.S., Kashubina, T.V., Milshtein, E.D., Rybalka, A.V., Erinchek, Yu.M., Sakulina, T.S., Krupnova, N.A., Shulgin, A.A., 2018, Crustal structure of the Mendeleev Rise and the Chukchi Plateau (Arctic Ocean) along the Russian wide-angle and multichannel seismic reflection experiment "Arctic-2012", Journal of Geodynamics, 119, 107-122.   DOI
8 Kim, J.H., Hachikubo, A., Kida, M., Minami, H., Lee, D.H., Jin, Y.K., Ryu, J.S., Lee, Y.M., Hur, J., Park, M.H., Kim, Y.G., Kang, M.H., Park, S., Chen, M., Kang, S.G., Kim, S., 2020b, Upwarding gas source and postgenetic processes in the shallow sediments from the ARAON Mounds, Chukchi Sea, Journal of Natural Gas Science and Engineering, 76, 103223.   DOI
9 Kim, Y.G., Kim, S., Lee, D.H., Lee, Y.M., Kim, H.J., Kang, S.G., Jin, Y.K., 2020a, Occurrence of active gas hydrate mounds in the southwestern slope of the Chukchi Plateau, Arctic Ocean, Episodes, 43(2), 811-823.   DOI
10 Jin, Y.K., Shipboard Scientific Party, 2019, ARA09C Cruise Report: 2018 Korea-Russia-Japan East Siberian/Chukchi Sea research program, BSPM18050-019-3, Korea Polar Research Institute, 205p.
11 Timmermans, M.L., Garrett, C., 2006, Evolution of the deep water in the Canadian Basin in the Arctic Ocean, Journal of Physical Oceanography, 36(5), 866-874.   DOI
12 Vadakkepuliyambatta, S., 2019, A graphical user interface for estimating the gas hydrate stability in marine sediments, https://doi.org/10.18710/OIXJEK, DataverseNO, V1.   DOI
13 Wang, R., Xiao, W., Shao, L., Chen, J., Gao, A., 2012, Paleoceanographic records in the Chukchi Basin, western Arctic Ocean during the late Quaternary, Acta Oceanologica Sinica, 31(1), 83-94.   DOI
14 Wilson, R.W., Houseman, G.A., Buiter, S.J.H., McCaffrey, K.J.W., Dore, A.G., 2019, Fifty years of the Wilson Cycle concept in plate tectonics: An overview, Geological Society, London, Special Publications, 470(1), 1-17.   DOI
15 Kang, S.G., Jang, U., Kim, S., Choi, Y., Kim, Y.G., Hong, J.K., Jin, Y.K., 2021, Exploration of the gas hydrates on the southwestern continental slope of the Chukchi Plateau in the Arctic Ocean, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(5), 418-432 (in Korean with English abstract).   DOI
16 Kvenvolden, K.A., Barnard, L.A., 1983, Gas hydrates of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76, Initial Reports of the Deep Sea Drilling Project Covering Leg 76 of the Cruises of the Drilling Vessel Glomar Challenger, Norfolk, Virginia to Fort Lauderdale, Florida, October-December, 1980, 76, 353p.
17 McKenzie, D.P., Roberts, J.M., Weiss, N.O., 1974, Convection in the earth's mantle: Towards a numerical simulation, Journal of Fluid Mechanics, 62(3), 465-538.   DOI
18 Jokat, W., 2009, The expedition of the research vessel "Polarstern" to the Arctic in 2008 (ARK-XXIII/3), Alfred Wegener Institute, 222p.
19 Zhang, T., Shen, Z.Y., Zhang, F., Ding, M., 2021, Heat flow distribution in the Chukchi Borderland and surrounding regions, Arctic Ocean, Geochemistry, Geophysics, Geosystems, 22(12), e2021GC010033.
20 Zhang, T., Dyment, J., Gao, J.Y., 2019, Age of the Canada Basin, Arctic Ocean: Indications from high-resolution magnetic data, Geophysical Research Letters, 46(23), 13712-13721.   DOI
21 Nikishin, A.M., Petrov, E.I., Cloetingh, S., Malyshev, N.A., Morozov, A.F., Posamentier, H.W., Verzhbitsky, V.E., Freiman, S.I., Rodina, E.A., Startseva, K.F., Zhukov, N.N., 2021b, Arctic Ocean Mega Project: Paper 2 - Arctic stratigraphy and regional tectonic structure, Earth-Science Reviews, 217, 103581.   DOI
22 Lee, G.H., Kim, H.J., Jou, H.T., Cho, H.M., 2003, Opal-A/opal-CT phase boundary inferred from bottom-simulating reflectors in the southern South Korea Plateau, East Sea (Sea of Japan), Geophysical Research Letters, 30(24), 2238.
23 Dossing, A., Gaina, C., Brozena, J.M., 2017, Building and breaking a large igneous province: An example from the High Arctic, Geophysical Research Letters, 44(12), 6011-6019.   DOI
24 Jin, Y.K., Shipboard Scientific Party, 2020, ARA10C Cruise Report: 2019 Korea-Russia East Siberian/Chukchi Sea research program, BSPM19050-101-3, Korea Polar Research Institute, 161p.
25 Geli, L., Turon, J.L., Aslanian, D., Balut, Y., Beuzart, P., Cochran, J., Francheteau, J., Harmegnies, F., Landure, J.Y., Le Suave, R., Mazaud, A., Michel, E., Normand, A., Pichon, J.J., Vlastelic, I., 2001, Deep-penetration heat flow probes raise questions about interpretations from shorter probes, Eos, Transactions American Geophysical Union, 82(29), 317-320.
26 Beardsmore, G.R., Cull, J.P., 2001, Crustal heat flow: A guide to measurement and modelling, Cambridge University Press, New York, NY, USA, 324pp.
27 Berndt, C., Bunz, S., Clayton, T., Mienert, J., Saunders, M., 2004, Seismic character of bottom simulating reflectors: Examples from the mid-Norwegian margin, Marine and Petroleum Geology, 21(6), 723-733.   DOI
28 Coakley, B., Brumley, K., Lebedeva-Ivanova, N., Mosher, D., 2016, Exploring the geology of the central Arctic Ocean; understanding the basin features in place and time, Journal of the Geological Society, 173(6), 967-987.   DOI
29 Expedition 317 Scientists, 2010, Canterbury Basin Sea Level: Global and local controls on continental margin stratigraphy, IODP Preliminary Report, 317, doi:10.2204/iodp.pr.317.2010.   DOI
30 Nikishin, A.M., Petrov, E.I., Cloetingh, S., Freiman, S.I., Malyshev, N.A., Morozov, A.F., Posamentier, H.W., Verzhbitsky, V.E., Zhukov, N.N., Startseva, K., 2021a, Arctic Ocean Mega Project: Paper 3 - Mesozoic to Cenozoic geological evolution, Earth-Science Reviews, 217, 103034.
31 Paton, D.A., Pindell, J., McDermott, K., Bellingham, P., Horn, B., 2017, Evolution of seaward-dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: Insights from the South Atlantic, Geology, 45(5), 439-442.   DOI
32 Bird, K.J., Houseknecht, D.W., 2017, Geology and assessment of undiscovered oil and gas resources of the Chukchi Borderland Province, 2008, Professional Paper 1824-C, U.S. Geological Survey, Reston, VA, 8p.
33 Butsenko, V.V., Firsov, Y.G., Kashubin, S.P., Piskarev, A.L., Zholondz, S.M., 2019, Chukchi Plateau and Chukchi Basin, In: Piskarev, A., Poselov, V., Kaminsky, V. (Eds.), Geologic Structures of the Arctic Basin, Springer International Publishing, 269-280.
34 Chernykh, A., Glebovsky, V., Zykov, M., Korneva, M., 2018, New insights into tectonics and evolution of the Amerasia Basin, Journal of Geodynamics, 119, 167-182.   DOI
35 Foucher, J.P., Nouze, H., Henry, P., 2002, Observation and tentative interpretation of a double BSR on the Nankai slope, Marine Geology, 187(1), 161-175.   DOI
36 GEBCO Compilation Group, 2020, GEBCO 2020 Grid, doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9.   DOI
37 Oakey, G.N., Saltus, R.W., 2016, Geophysical analysis of the Alpha-Mendeleev ridge complex: Characterization of the High Arctic Large Igneous Province, Tectonophysics, 691, 65-84.   DOI
38 O'Regan, M., 2007, Data report: high-resolution bulk density, dry density, and porosity records from the Arctic Coring Expedition, IODP Expedition 302, In: Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., Expedition 302 Scientists (Eds.), Proc. IODP, 302: Integrated Ocean Drilling Program Management International Inc., Edinburgh.
39 Pollack, H.N., Hurter, S.J., Johnson, J.R., 1993, Heat flow from the Earth's interior: Analysis of the global data set, Reviews of Geophysics, 31(3), 267-280.   DOI
40 Goto, S., Matsubayashi, O., 2008, Inversion of needle-probe data for sediment thermal properties of the eastern flank of the Juan de Fuca Ridge, Journal of Geophysical Research: Solid Earth, 113(B8), B08105.
41 Pribnow, D.F.C., Kinoshita, M., Stein, C.A., 2000, Thermal data collection and heat flow recalculations for ODP Legs 101-180, Hannover, Germany.
42 Sclater, J.G., Hasterok, D., Goutorbe, B., Hillier, J., Negrete, R., 2014, Marine heat flow, In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (Eds.), Encyclopedia of Marine Geosciences, Springer Netherlands, Dordrecht, 1-16.
43 Stein, C.A., 2013, Heat flow of the Earth, In: Ahrens, T.J. (Ed.), Global Earth Physics, American Geophysical Union, 144-158.
44 Stein, C.A., Stein, S., 1992, A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359(6391), 123-129.   DOI
45 Von Herzen, R., Ruppel, C., Molnar, P., Nettles, M., Nagihara, S., Ekstrom, G., 2001, A constraint on the shear stress at the Pacific-Australian plate boundary from heat flow and seismicity at the Kermadec forearc, Journal of Geophysical Research: Solid Earth, 106(B4), 6817-6833.   DOI
46 Xu, W., Ruppel, C., 1999, Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments, Journal of Geophysical Research: Solid Earth, 104(B3), 5081-5095.   DOI
47 Davis, E.E., Wang, K., Becker, K., Thomson, R.E., Yashayaev, I., 2003, Deep-ocean temperature variations and implications for errors in seafloor heat flow determinations, Journal of Geophysical Research: Solid Earth, 108(B1), 2034.
48 Grantz, A., Clark, D.L., Phillips, R.L., Srivastava, S.P., Blome, C.D., Gray, L.B., Haga, H., Mamet, B.L., McIntyre, D.J., McNeil, D.H., Mickey, M.B., Mullen, M.W., Murchey, B.I., Ross, C.A., Stevens, C.H., Silberling, N.J., Wall, J.H., Willard, D.A., 1998, Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada basin, and the geometry and timing of rifting in the Amerasia basin, Arctic Ocean, GSA Bulletin, 110(6), 801-820.   DOI
49 Geletti, R., Busetti, M., 2011, A double bottom simulating reflector in the western Ross Sea, Antarctica, Journal of Geophysical Research: Solid Earth, 116(B4), B04101.
50 Sloan Jr., E.D., Koh, C.A., 2007, Clathrate hydrates of natural gases (3rd ed.), CRC Press, 752p.
51 Fisher, A.T., Harris, R.N., 2010, Using seafloor heat flow as a tracer to map subseafloor fluid flow in the ocean crust, Geofluids, 10(1-2), 142-160.   DOI
52 Nikishin, A.M., Startseva, K.F., Verzhbitsky, V.E., Cloetingh, S., Malyshev, N.A., Petrov, E.I., Posamentier, H., Freiman, S.I., Lineva, M.D., Zhukov, N.N., 2019, Sedimentary basins of the East Siberian sea and the Chukchi sea and the adjacent area of the Amerasia basin: Seismic stratigraphy and stages of geological history, Geotectonics, 53(6),635-657.   DOI
53 Grevemeyer, I., Villinger, H., 2001, Gas hydrate stability and the assessment of heat flow through continental margins, Geophysical Journal International, 145(3), 647-660.   DOI
54 Grantz, A., Hart, P.E., Childers, V.A., 2011, Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean, In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V., Sorensen, K. (Eds.), Arctic Petroleum Geology, Geological Society Memoir No. 35, The Geological Society of London, 771-799.