Applicability of Vegetation Index and SPAD Reading to Nondestructive Diagnosis of Rice Growth and Nitrogen Nutrition Status

식생지수와 SPAD를 이용한 벼 생육 및 질소영양상태의 비파괴적 진단 가능성 검토

  • Kim Min-Ho (Dept. of Plant Science, College of Agriculture and Life Sciences, Seoul Nat'l Univ.) ;
  • Shin Jin-Chul (Dept. of Crop Physiology and Ecology. National Institute of Crop Science, RDA) ;
  • Lee Byun-Woo (Dept. of Plant Science, College of Agriculture and Life Sciences, Seoul Nat'l Univ.)
  • 김민호 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 신진철 (농촌진흥청 작물과학원 작물생리생태과) ;
  • 이변우 (서울대학교 농업생명과학대학 식물생산과학부)
  • Published : 2005.12.01

Abstract

Precise application of topdressing nitrogen (N) fertilizer is indispensible for securing high yield and good quality of rice and minimizing N losses to the environment as well. For precise N management, growth and nitrogen nutrition status (NNS) should be diagnosed rapidly and accurately. The objective of the study was to evaluate the applicability of vegetation index (VI) calculated from hyperspectral canopy reflectance measurement and SPAD reading to nondestructive in situ diagnosis of growth and NNS of rice. Canopy reflectance, SPAD read­ing, growth parameters, and NNS characteristics were measured from various N treatments to evaluate the relationships among them for two cropping seasons from 2001 to 2002. The correlation coefficient of VIs with variables of growth and NNS increased positively as rice canopy became more closed. Regardless of growth stages, VIs had significantly high correlations with LAI, shoot dry weight (DW), shoot N content and nitrogen nutrition index (NNI). Those correlation coefficients increased steadily before heading stage as rice grew up. However, tiller number and leaf N concentration showed significantly high correlations with VIs only at and after panicle initiation stage (PIS). Among the VIs, RVIgreen had significantly higher correlation with the measured parameters than the other VIs: it showed correlation coefficients greater than 0.8 with leaf and shoot N concentration and DW, and much higher coefficients greater than 0.9 with LAI, shoot N content, and NNI. At LAI of below 2.5, VIs had non-significant or low correlations with the growth and NNS indicators due to the background effects. SPAD reading had significantly high correlation with leaf N concentration and NNI at each growth stage. In addition, it had significant correlations with variables of growth and NNS at PIS and booting stage, particularly, at booting stage. Though SPAD reading had a significantly high correlation value at a given growth stage in each year, it showed very weak relationship with variables of growth and NNS when pooled across growth stages and years. In conclusion, RVIgreen was found to be the most reliable VI to estimate the growth and NNS of rice around at PIS, but SPAD reading had much limitations.

정밀한 재배관리를 위해서는 작물의 영양상태를 빠르고 정확하게 진단하고 이를 근거로 처방해야 한다. 따라서 본 연구는 우리나리의 벼 재배여건에서 영양생장기 생체정보를 군락반사와 SPAD-meter 측정값으로 추정할 수 있는지를 다양한 영양생장기 생육 및 질소영양상태에서 검토하였다. 1. 생육이 진전됨에 따라서 가시역의 반사율은 줄어들고 근적외역의 반사율은 증가하는 경향이었다. 군락의 반사율은 엽면적지수에 따라 크게 변하였으며, 군락이 폐쇄되어 배경효과가 줄어드는 엽면적지수 2.5 이상에서 측정하는 것이 유효하였다. 2. 군락반사로 얻어진 식생지수 RVI, NDVI는 이앙후 30일 이후부터 작물의 생육량 및 질소영양상태와 밀접한 관련이 있었으며, 특히 엽면적지수, 건물중, 지상부 질소흡수량 및 NNI와 고도로 유의한 상관관계를 나타내었는데, 이는 이들이 생육이 진전됨에 따라서 증가하는 경향을 갖고 있기 때문이었다. 3. RVI가 NDVI보다 생육량 및 질소영양상태와 관련성이 높았는데, NDVI는 낮은 엽면적이나 건물중에서도 1에 근접하는 포화현상이 발생하기 때문에 생체정보의 변이가 큰 조건에서는 RVI가 더 유용하다고 판단된다. 식생지수 중에서는 RVIgreen이 생육량 및 질소영양상태와 관련성이 가장 높았다. 4. SPAD값은 특정년도 특정시기의 질소영양상태 및 생장량과 매우 높은 상관을 보였으나 생육시기나 연도를 통합할 경우 상관이 낮았다. SPAD 값은 엽면적지수에 관계없이 생육특성과는 관련성이 거의 없었고, 질소영양 관련 특성치 간에만 유의한 상관관계가 존재하였다. 5. SPAD-meter는 많은 제한조건이 있는 반면, 식생지수중 RVIgreen을 이용할 경우 유수형성기 전후 벼의 생육량이나 질소영앙상태를 가장 잘 추정할 수 있을 것으로 판단된다.

Keywords

References

  1. Agren, G. I. 1985. Theory for growth of plants derived from the nitrogen productivity concept. Physiologia Plantarum 64:17-28 https://doi.org/10.1111/j.1399-3054.1985.tb01207.x
  2. Cui, R. X., M. H. Kim, J. H. Kim, H. S. Nam, and B. W. Lee. 2002. Determination of critical nitrogen concentration and dilution curve for rice growth. Korean Journal of Crop Science. 47:127-131
  3. Danson, F. M. and S. E. Plummer. 1995. Red-edge response to forest leaf area index. International Journal of Remote Sensing 16: 183-188 https://doi.org/10.1080/01431169508954387
  4. Daughtry, C. S. T., C. L. Walthall, M. S. Kim, E. Brown de Colstoun, and J. E. McMurtrey III. 2000. Estimating com leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74:229-239 https://doi.org/10.1016/S0034-4257(00)00113-9
  5. Diker, K. and W. C. Bausch. 2003. Radiometric field measurements of maize for estimating soil and plant nitrogen. Biosystems Engineering 86(4):411-420 https://doi.org/10.1016/j.biosystemseng.2003.08.016
  6. Flowers, M., R. Weisz, and R. Heiniger. 2003. Quantitative approaches for using color infrared photography for assessing inseason nitrogen status in winter wheat. Agronomy Journal 95: 1189-1200 https://doi.org/10.2134/agronj2003.1189
  7. Fox, R. H., W. P. Piekielek, and K. M. Macneal. 1994. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Community of Soil Science and Plant Analysis 25: 171-181 https://doi.org/10.1080/00103629409369027
  8. Gausman, H. W., W. A. Allen, V. I. Myers, and R. Cardenas. 1969. Reflectance and internal structure of cotton leaves, Gossypium birsutum L. Agronomy Journal 61:374-376 https://doi.org/10.2134/agronj1969.00021962006100030011x
  9. Hansen, P. M. and J. K. Schjoerring. 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment 86:542-553 https://doi.org/10.1016/S0034-4257(03)00131-7
  10. 홍석영. 1999. 원격탐사 자료를 이용한 벼 생육정보 분석 및 재배면적 추정. 경북대학교 박사학위논문
  11. 김준환. 2001. 벼의 한계질소농도 구명 및 군락반사율에 의한 질소영양상태 추정연구. 서울대학교 석사학위논문
  12. Ladha, J. K., A. Tirol-Padre, G. C. Punzalan, E. Castillo, U. Singh, and C. K. Reddy. 1998. Nondestructive estimation of shoot nitrogen in different rice genotypes. Agronomy Journal 90:33-40 https://doi.org/10.2134/agronj1998.00021962009000010007x
  13. Ma, B. L., L. M. Dwyer, C. Costa, E. R. Cober, and M. J. Morrison. 2001. Early prediction of soybean yield from canopy reflectance measurements. Agronomy Journal 93:1227-1234 https://doi.org/10.2134/agronj2001.1227
  14. Norman, R. J., D. Guindo, B. R. Wells, and C. E. Wilson, Jr. 1992. Seasonal accumulation and partitioning of nitrogen-15 in rice. Soil Science Society of American Journal 56:1521-1527 https://doi.org/10.2136/sssaj1992.03615995005600050031x
  15. Peng. S., R. C. Laza, F. V. Garcia, and K. G. Cassman. 1995. Chlorophyll meter estimates leaf area based nitrogen concentration of rice. Community of Soil Science and Plant Analysis 26:927-935 https://doi.org/10.1080/00103629509369344
  16. Piekielek, W. P., R. H. Fox, J. D. Toth, and K. E. Macneal. 1995. Use of a chlorophyll meter at the early dent stage of com to evaluate nitrogen sufficiency. Agronomy Journal 87:403-408 https://doi.org/10.2134/agronj1995.00021962008700030003x
  17. Piekielek, W. P. and R. H. Fox. 1992. Use of a chlorophyll meter to predict sidedress N requirements for maize. Agronomy Journal 84:59-65 https://doi.org/10.2134/agronj1992.00021962008400010013x
  18. Pontailler, J. Y., G. J. Hymus, and B. G. Drake. 2003. Estimation ofleaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques. Canadian Journal of Remote Sensing 29(3):381-387 https://doi.org/10.5589/m03-009
  19. Rondeauz, G, M. Steven, and F. Baret. 1996. Optimization of soiladjusted vegetation indices. Remote Sensing of Environment 55:95-107 https://doi.org/10.1016/0034-4257(95)00186-7
  20. Turner, F. T. and M. F. Jund. 1991. Chlorophyll meter to predict nitrogen topdressing requirement for semidwarf rice. Agronomy Journal 83:926-928 https://doi.org/10.2134/agronj1991.00021962008300050029x
  21. Yang, Y. K. and L. D. Miller. 1985. Correlations of rice grain yields to radiometric estimates of canopy biomass as a function of growth stage. Journal of Korean Society of Remote Sensing 1:63-86
  22. Yoder, B. J. and R. E. Pettigrew-Crosby. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra(400-2500nm) at leaf and canopy scales. Remote Sensing of Environment 53:199-211 https://doi.org/10.1016/0034-4257(95)00135-N