• Title/Summary/Keyword: site specific mutagenesis

Search Result 81, Processing Time 0.027 seconds

Directed evolution을 이용한 (S)-Ketoprofen ethlyester의 광학분활용 Esterase의 특성 개량

  • Kim, Seung-Beom;Kim, Ji-Hui;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.445-449
    • /
    • 2003
  • As for the purpose, we first introduce an random mutation into wild-type gene to expand a mutation space, and then further recombine the mutant genes by staggered extension process PCR. As a result, we obtained the best clones 6-52 that showed a high activity and stability, from a round of error prone and staggered extension process PCR. The purified enzyme showed a similar pH stability to the wild-type enzyme and reveal a slightly high optimum pH at 12. In the optimum temperature, an identical dependency was also showed and a quite high stability in the thermal stability was obtained. Along with this, the enzyme was also stable at a reaction that supplement with a 15 % of ethanol as an additive. The addition of other solvents and surfactants did not improve the reaction and thus resulted in a similar profile to those of wild-type enzyme. The specific activity on the target compound rac-ketoprofen ethyl ester was calculated to be about 85, 000 unit, and the kinetic constants Km and Vmax were determined to be 0.2 mM and 90 mM/mg-protein/min respectively. The deduced amino acid alignment with the wild type enzyme revealed five mutations at L120P, I208V, T249A, D287H and T357A. Based on these observations, the site directed mutagenesis to delineate the mutagenic effect is under progress.

  • PDF

Structural analysis of sialyltransferase PM0188 from Pasteurella multocida complexed with donor analogue and acceptor sugar

  • Kim, Dong-Uk;Yoo, Ji-Ho;Lee, Yong-Joo;Kim, Kwan-Soo;Cho, Hyun-Soo
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.48-54
    • /
    • 2008
  • PM0188 is a newly identified sialyltransferase from P. multocida which transfers sialic acid from cytidine 5'-monophosphonuraminic acid (CMP-NeuAc) to an acceptor sugar. Although sialyltransferases are involved in important biological functions like cell-cell recognition, cell differentiation and receptor-ligand interactions, little is known about their catalytic mechanism. Here, we report the X-ray crystal structures of PM0188 in the presence of an acceptor sugar and a donor sugar analogue, revealing the precise mechanism of sialic acid transfer. Site-directed mutagenesis, kinetic assays, and structural analysis show that Asp141, His311, Glu338, Ser355 and Ser356 are important catalytic residues; Asp141 is especially crucial as it acts as a general base. These complex structures provide insights into the mechanism of sialyltransferases and the structure-based design of specific inhibitors.

FAD-independent and Herbicide-resistant Mutants of Tobacco Acetohydroxy Acid Synthase

  • Le, Dung Tien;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.916-920
    • /
    • 2005
  • Acetohydroxy acid synthase catalyzes the first common step in the biosynthesis of branched chain amino acids. AHAS plays two distinct metabolic roles, and is designated as anabolic AHAS and catabolic AHAS, depending on its function. Anabolic AHAS is FAD-dependent, while its catabolic counterpart is not. In this work, a conserved motif was identified in the $\beta$-domain of anabolic AHASs, but not in catabolic AHAS ($_{372}RFDDR_{376}$). In order to determine the functions of this motif, we replaced the motif with the corresponding sequence in FAD-independent AHAS, SPVEY. None of these three mutants (SPV, SPVE, and SPVEY) was detected with bound FAD. However, two of these mutants (SPVE and SPVEY) were active at a low level of specific activity. Although they exhibited pyruvate- and ThDP- dependent characteristics, the activity of the two active mutants appears to be FAD-independent. The SPVEY mutant was completely insensitive to the three tested herbicides, even at extremely high concentrations and is also somewhat more thermolabile than the wild type enzyme. The data provided in this work suggest that the RFDDR motif is a possible determinant of the FAD-dependent and herbicide-resistant properties of tobacco AHAS. The SPVEY mutant appears to exhibit catabolic AHAS-like activity.

Amino Acid Structure of Dopamine Transporter Responsible for Cocaine Binding (코카인 결합과 관련된 도파민 수송체의 아미노산 구조)

  • 장미윤;전대준;오동렬;이용성;이상훈
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.743-750
    • /
    • 1999
  • Human and bovine dopamine transporters (DAT) demonstrate discrete functional differences in the dopamine (DA) transport and cocaine binding. The functional analyses on the chimeras of human and bovine DAT have revealed that the region from the $133^{rd}{\;}to{\;}186^{th}$ residue(encompassing the $3^{rd}$ trans-membrane domain (TM) is responsible for the substrate transport and cocaine binding. The present studies have been done to find out the specific amino acid(s) which is essential for the binding of cocaine to DAT by interchanging the amino acids in that region between human and bovine DAT. When isoleucine, the $152^{nd}$ residue of chimera B3 (bovine DAT sequence) was transformed back to valine, the human DAT residue at the identical position, the cocaine binding was remarkably recovered to 98% of the human DAT values. In addition, the cocaine binding of the human DAT was decreased by 57% by substituting isoleucine for valine at position 152. When isoleucine at position 152 of the chimera B3 was converted to the other amino acids to provide an possible molecular basis for the functional role of the $152^{nd}$ residue, only the conversion to alanine among acids tested significantly the cocaine by 34%, but these effect were not as much as those by the conversion to valine. In conclusion, valine at position 152 is a crucial amino acid for the interaction of cocaine to the DAT.

  • PDF

Identification of catalytic acidic residues of levan fructotransferase from Microbacterium sp. AL-210 (Microbacterium sp. AL-210이 생산하는 levan fructotransferase의 효소활성에 중요한 아미노산의 동정)

  • Sung, Hee-Kyung;Moon, Keum-Ok;Choi, Ki-Won;Choi, Kyung-Hwa;Hwang, Kyung-Ju;Kim, Myo-Jung;Cha, Jae-Ho
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.6-11
    • /
    • 2007
  • [ $\beta$ ]-Fructofuranosidases, a family 32 of glycoside hydrolases (GH32), share three conserved domains including the W(L/M)(C/N)DP(Q/N), FRDPK, and ECP(D/G) motifs. The functional role of the conserved acidic residues within three domains of levan fructotransferase, one of the $\beta-fructofuranosidases$, from Microbacterium sp. AL-210 was studied by site-directed mutagenesis. Each mutant was overexpressed in E. coli BL21(DE3) and purified by using Hi-Trap chelating affinity chromatography and fast performance liquid chromatography. Substitution of Asp-63 by Ala, Asp-195 by Asn, and Glu-245 by Ala and Asp decreased the enzyme activity by approximately 100-fold compared to the wild-type enzyme. This result indicates that three acidic residues Asp-63, Asp-195, and Glu-245 play a major role in catalysis. Since the three acidic residues are present in a conserved position in inulinase, levanase, levanfructotransferase, and invertase, they are likely to have a common functional role as nucleophile, transition state stabilizer, and general acid in $\beta-fructofuranosidases$.

A Novel Approach to Investigating Protein/Protein Interactions and Their Functions by TAP-Tagged Yeast Strains and its Application to Examine Yeast Transcription Machinery

  • Jung, Jun-Ho;Ahn, Yeh-Jin;Kang, Lin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.631-638
    • /
    • 2008
  • Tandem affinity purification (TAP) method combined with LC-MS/MS is the most accurate and reliable way to study the interaction of proteins or proteomics in a genome-wide scale. For the first time, we used a TAP-tag as a mutagenic tool to disrupt protein interactions at the specific site. Although lots of commonly used mutational tools exist to study functions of a gene, such as deletional mutations and site-directed mutagenesis, each method has its own demerit. To test the usefulness of a TAP-tag as a mutagenic tool, we applied a TAP-tag to RNA polymerase II, which is the key enzyme of gene expression and is controlled by hundreds of transcription factors even to transcribe a gene. Our experiment is based on the hypothesis that there will be interrupted interactions between Pol II and transcription factors owing to the TAP-tag attached at the C-terminus of each subunit of Pol II, and the abnormality caused by interrupted protein interactions can be observed by measuring a cell-cycle of each yeast strain. From ten different TAP-tagged strains, Rpb7- and Rpb12-TAP-tagged strains show severe defects in growth rate and morphology. Without a heterodimer of Rpb4/Rpb7, only the ten subunits Pol II can conduct transcription normally, and there is no previously known function of Rpb7. The observed defect of the Rpb7-TAP-tagged strain shows that Rpb7 forms a complex with other proteins or compounds and the interruption of the interaction can interfere with the normal cell cycle and morphology of the cell and nucleus. This is a novel attempt to use a TAP-tag as a proteomic tool to study protein interactions.

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha;Kwon, Sunghark;Lee, Chang Woo;Kim, Chang Min;Jeong, Chang Sook;Kim, Kyung-Jin;Hong, Jong Wook;Kim, Hak Jun;Park, Hyun Ho;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.244-255
    • /
    • 2019
  • Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Formation of DNA-protein Cross-links Mediated by C1'-oxidized Abasic Lesion in Mouse Embryonic Fibroblast Cell-free Extracts

  • Sung, Jung-Suk;Park, In-Kook
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • Oxidized abasic residues arise as a major class of DNA damage by a variety of agents involving free radical attack and oxidation of deoxyribose sugar components. 2-deoxyribonolactone (dL) is a C1'-oxidized abasic lesion implicated in DNA strand scission, mutagenesis, and covalent DNA-protein cross-link (DPC). We show here that mammalian cell-free extract give rise to stable DPC formation that is specifically mediated by dL residue. When a duplex DNA containing dL at the site-specific position was incubated with cell-free extracts of Po ${\beta}-proficient$ and -deficient mouse embryonic fibroblast cells, the formation of major dL-mediated DPC was dependent on the presence of DNA polymerase (Pol) ${\beta}$. Formation of dL-specific DPC was also observed with histones and FEN1 nuclease, although the reactivity in forming dL-mediated DPC was significantly higher with Pol ${\beta}$ than with histones or FEN1. DNA repair assay with a defined DPC revealed that the dL lesion once cross-linked with Pol ${\beta}$ was resistant to nucleotide excision repair activity of cell-free extract. Analysis of nucleotide excision repair utilizing a model DNA substrate containing a (6-4) photoproduct suggested that excision process for DPC was inhibited because of DNA single-strand incision at 5' of the lesion. Consequently DPC mediated by dL lesion may not be readily repaired by DNA excision repair pathway but instead function as unusual DNA damage causing a prolonged DNA strand break and trapping of the major base excision repair enzyme.

Production rind Characterization of the Polyclonal Anti-peptide Antibody for $\beta$-adrenergic Receptor

  • Kim, Hee-Jin;Shin, Chan-Young;Sang Bong lee;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.2 no.4
    • /
    • pp.303-309
    • /
    • 1994
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. Two kinds of antibodies could be produced, one is from synthetic peptides and the other from proteins such as purified receptor. Anti-peptide antibodies gave some advantages; epitope is evident and also receptor purification in quantity is not prerequisite. It can be also applied to the study of receptor structure-activity relationship. The purpose of the present study was 1) to produce and characterize a polyclonal antibody against a synthetic $\beta$2-adrenergic receptor peptide(Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-Ile-Asp-Val-Leu) and 2) to determine the effects of this antibody on the $\beta$-adrenergic receptor ligand interaction. The peptide sequence contains an amino acid residue such as Asp-113 which was identified as one of important component for receptor-ligand interaction in site-directed mutagenesis studies. Production of antibody was performed by immunization of rabbits through popliteal lymph node with the peptide coupled with Keyhole Limpet Hemocyanin (KLH). The titer of antibody against this peptide was 1 : 1000. The anti-peptide antibody was able to detect a 67 kDa protein band in western blot corresponding to the molecular weight of the $\beta$-adrenergic receptor in partially purified receptor fraction derived from guinea pig lung. The antisera inhibited the specific binding of [$^3$H]dihydroalprenolol to $\beta$-adrenergic receptor in a concentration-dependent manner. The results from this study suggest that the peptide sequence selected in the present study is important for the receptor ligand interaction.

  • PDF

Identification of another calmodulin-binding domain at the C-terminal region of AtCBP63

  • Kim, Sun-Ho;Kang, Yun-Hwan;Han, Hay-Ju;Bae, Dong-Won;Kim, Min-Chul;Lim, Chae-Oh;Chung, Woo-Sik
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • Calcium signals can be transduced by binding calmodulin (CaM), a $Ca^{2+}$ sensor in eukaryotes, is known to be involved in the regulation of diverse cellular functions. We isolated a CaM-binding protein 63 kD (AtCBP63) from the pathogen-treated Arabidopsis cDNA expression library. Recently, AtCBP63 was identified as a CaM bining protein. The CaM binding domain of AtCBP63 was reported to be located in its N-terminal region, In this study, however, we showed that ACaM2 could specifically bind to second CaM-binding domain (CaMBD) of AtCBP63 at the C-terminal region. The specific binding of CaM to CaM binding domain was confirmed by a gel mobility shift assay, a split ubiquitin assay, site-directed mutagenesis, and a competition assay using a $Ca^{2+}$/CaM-dependent enzyme. The gene expression of AtCBP63 was induced by pathogens and pathogens related second messengers. This result suggests that a CaM binding protein, AtCBP63, may play role in pathogen defense signaling pathway.