Browse > Article

A Novel Approach to Investigating Protein/Protein Interactions and Their Functions by TAP-Tagged Yeast Strains and its Application to Examine Yeast Transcription Machinery  

Jung, Jun-Ho (Department of Advanced Technology Fusion, Konkuk University)
Ahn, Yeh-Jin (Division of Life Science, College of Natural Sciences, Sangmyung University)
Kang, Lin-Woo (Department of Advanced Technology Fusion, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.4, 2008 , pp. 631-638 More about this Journal
Abstract
Tandem affinity purification (TAP) method combined with LC-MS/MS is the most accurate and reliable way to study the interaction of proteins or proteomics in a genome-wide scale. For the first time, we used a TAP-tag as a mutagenic tool to disrupt protein interactions at the specific site. Although lots of commonly used mutational tools exist to study functions of a gene, such as deletional mutations and site-directed mutagenesis, each method has its own demerit. To test the usefulness of a TAP-tag as a mutagenic tool, we applied a TAP-tag to RNA polymerase II, which is the key enzyme of gene expression and is controlled by hundreds of transcription factors even to transcribe a gene. Our experiment is based on the hypothesis that there will be interrupted interactions between Pol II and transcription factors owing to the TAP-tag attached at the C-terminus of each subunit of Pol II, and the abnormality caused by interrupted protein interactions can be observed by measuring a cell-cycle of each yeast strain. From ten different TAP-tagged strains, Rpb7- and Rpb12-TAP-tagged strains show severe defects in growth rate and morphology. Without a heterodimer of Rpb4/Rpb7, only the ten subunits Pol II can conduct transcription normally, and there is no previously known function of Rpb7. The observed defect of the Rpb7-TAP-tagged strain shows that Rpb7 forms a complex with other proteins or compounds and the interruption of the interaction can interfere with the normal cell cycle and morphology of the cell and nucleus. This is a novel attempt to use a TAP-tag as a proteomic tool to study protein interactions.
Keywords
Tandem affinity purification (TAP); RNA polymerase II; protein/protein interaction; s (PPI); transcription; structural proteomics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Consortium, T. C. E. S. 1998. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282: 2012-2018   DOI
2 Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, et al. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141-147   DOI   ScienceOn
3 Gupta, P. and K. H. Lee. 2007. Genomics and proteomics in process development: Opportunities and challenges. Trends Biotechnol. 25: 324-330   DOI   ScienceOn
4 Lee, K., H. S. Joo, Y. H. Yang, E. J. Song, and B. G. Kim. 2006. Proteomics for Streptomyces: "Industrial proteomics" for antibiotics. J. Microbiol. Biotechnol. 16: 331-348   과학기술학회마을
5 Mitsuzawa, H., E. Kanda, and A. Ishihama. 2003. Rpb7 subunit of RNA polymerase II interacts with an RNA-binding protein involved in processing of transcripts. Nucleic Acids Res. 31: 4696-4701   DOI   ScienceOn
6 Peiro-Chova, L. and F. Estruch. 2007. Specific defects in different transcription complexes compensate for the requirement of the negative cofactor 2 repressor in Saccharomyces cerevisiae. Genetics 176: 125-138   DOI   ScienceOn
7 Puig, O., F. Caspary, G. Rigaut, B. Rutz, E. Bouveret, E. Bragado-Nilsson, M. Wilm, and B. Seraphin. 2001. The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 24: 218-229   DOI   ScienceOn
8 Sanders, S. L., J. Jennings, A. Canutescu, A. J. Link, and P. A. Weil. 2002. Proteomics of the eukaryotic transcription machinery: Identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol. 22: 4723-4738   DOI   ScienceOn
9 Krogan, N. J., G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, et al. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637-643   DOI   ScienceOn
10 Davis, J. A., Y. Takagi, R. D. Kornberg, and F. J. Asturias. 2002. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Molec. Cell 10: 409-415   DOI   ScienceOn
11 Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, et al. 2001. The sequence of the human genome. Science 291: 1304-1351   DOI   ScienceOn
12 Cramer, P., D. A. Bushnell, J. Fu, A. L. Gnatt, B. Maier-Davis, N. E. Thompson, et al. 2000. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288: 640-649   DOI
13 Schaft, D., A. Roguev, K. M. Kotovic, A. Shevchenko, M. Sarov, K. M. Neugebauer, and A. F. Stewart. 2003. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res. 31: 2475-2482   DOI   ScienceOn
14 Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, et al. 1996. Life with 6000 genes. Science 274: 546, 563-567
15 Initiative, T. A. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815   DOI   ScienceOn
16 Chung, W.-H., J. L. Craighead, W.-H. Chang, C. Ezeokonkwo, A. Bareket-Samish, R. D. Kornberg, and F. J. Asturias. 2003. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Molec. Cell 12: 1003-1013   DOI   ScienceOn
17 DeLano, W. L. 2002. The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, U.S.A.
18 Kus, B., A. Gajadhar, K. Stanger, R. Cho, W. Sun, N. Rouleau, et al. 2005. A high throughput screen to identify substrates for the ubiquitin ligase Rsp5. J. Biol. Chem. 280: 29470-29478   DOI   ScienceOn
19 Yuryev, A., M. Patturajan, Y. Litingtung, R. V. Joshi, C. Gentile, M. Gebara, and J. L. Corden. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. USA 93: 6975-6980
20 Bushnell, D. A. and R. D. Kornberg. 2003. Complete, 12- subunit RNA polymerase II at 4.1-A resolution: Implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA 100: 6969-6973
21 Gavin, A. C., P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, et al. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631-636   DOI   ScienceOn
22 Ptacek, J., G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo, et al. 2005. Global analysis of protein phosphorylation in yeast. Nature 438: 679-684   DOI   ScienceOn
23 Collins, S. R., P. Kemmeren, X. C. Zhao, J. F. Greenblatt, F. Spencer, F. C. Holstege, J. S. Weissman, and N. J. Krogan. 2007. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6: 439-450   DOI
24 Bushnell, D. A., K. D. Westover, R. E. Davis, and R. D. Kornberg. 2004. Structural basis of transcription: An RNA polymerase II-TFIIB cocrystal at 4.5 angstroms. Science 303: 983-988   DOI
25 Ghaemmaghami, S., W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K. O'Shea, and J. S. Weissman. 2003. Global analysis of protein expression in yeast. Nature 425: 737-741   DOI   ScienceOn
26 Meinhart, A., T. Kamenski, S. Hoeppner, S. Baumli, and P. Cramer. 2005. A structural perspective of CTD function. Genes Dev. 19: 1401-1415   DOI   ScienceOn
27 Cramer, P., D. A. Bushnell, and R. D. Kornberg. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292: 1863-1876   DOI
28 Lee, Y. C., S. Min, B. S. Gim, and Y. J. Kim. 1997. A transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and is conserved from yeast to humans. Mol. Cell. Biol. 17: 4622-4632   DOI
29 Adams, M. D., S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne, P. G. Amanatides, et al. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185-2195   DOI
30 Kim, I. S., H. S. Yun, and I. N. Jin. 2007. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress. J. Microbiol. Biotechnol. 17: 207-217   과학기술학회마을
31 Lindstrom, D. L., S. L. Squazzo, N. Muster, T. A. Burckin, K. C. Wachter, C. A. Emigh, J. A. McCleery, J. R. Yates 3rd, and G. A. Hartzog. 2003. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol. Cell. Biol. 23: 1368-1378   DOI   ScienceOn
32 Takagi, Y., G. Calero, H. Komori, J. A. Brown, A. H. Ehrensberger, A. Hudmon, F. Asturias, and R. D. Kornberg. 2006. Head module control of mediator interactions. Mol. Cell. 23: 355-364   DOI   ScienceOn
33 Kim, Y.-J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599-608   DOI   ScienceOn