• 제목/요약/키워드: site response analysis

검색결과 662건 처리시간 0.03초

포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석 (Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake)

  • 임승현;최인길
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

부지응답해석에 기초한 지하공간 내진설계 개념 (Aseismic design concept for underground space based on site response analysis)

  • 박인준;유지형
    • 한국터널지하공간학회 논문집
    • /
    • 제12권3호
    • /
    • pp.257-264
    • /
    • 2010
  • 본 논문은 부지응답해석 및 실내시험에 기초한 지하공간 내진설계 개념을 제안하는데 목적을 두고 있다. 설계응답 스펙트럼 및 가속도시간이력과 같은 입력운동의 통제점 위치와 기반암 가정물성이 내진설계에 매우 중요한 역할을 하고 있음을 본 연구결과를 통해 알 수 있었다. 그러므로 통제점 위치에 따른 지표면 자유장운동, 기반암운동 또는 암반노두운동 지반운동 변화를 합리적으로 모델링 할 수 있는 적절한 지반응답 모델을 이용하면 지진하중을 받는 지하공간의 합리적인 경계조건을 모사할 수 있고 현실적인 내진설계가 가능하다.

고성토 제방의 부지응답해석을 위한 전단강성 평가 (Evaluation of Stiffness Profile for Site Response Analysis of Highly-Elevated Earth-fill Embankment)

  • 조성호;노리나;하사눌
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.872-879
    • /
    • 2010
  • High rock-fill embankment is relatively flexible, which makes crest of embankment subject to excessive amplification in displacement due to earthquake loading. To overcome problems related with site response in high embankment, it is essential to evaluate shear-wave velocity profile of the embankment with improved accuracy and reliability. In this aspect, an experimental research was performed to answer how to perform surface-wave tests and to analyze measurements at an embankment site with a sloping ground surface. Unlike flat ground surface, sloping ground may hamper and slow down propagation of surface waves due to multiple reflections and refractions in embankment. To figure out this reasoning for the effect of multiple reflections and refractions due to sloping surface, surface wave tests were performed at a reservoir embankment of Chung-Song in North KyeongSang Province. Parameters involved in surface wave tests at non-flat surface, including source directionality, geometry-related constraint and frequency components in source function, were investigated using field measurements.

  • PDF

스펙트럼 형상이 원전 기기 지진취약도에 미치는 영향 평가 (Evaluation of Response Spectrum Shape Effect on Seismic Fragility of NPP Component)

  • 최인길;서정문;전영선;이종림
    • 한국지진공학회논문집
    • /
    • 제7권4호
    • /
    • pp.23-30
    • /
    • 2003
  • 최근 수행된 우리나라 원전 부지에 대한 지진재해도 해석 결과 작성된 등재해도 스펙트럼에서 고진동수 성분의 지진동이 매우 우세하게 나타나고 있다. 일반적으로 지진취약도 해석에서는 설계 스펙트럼에 내재된 보수성을 평가하기 위해 스펙트럼 형상계수가 사용된다. 본 연구에서는 입력지반운동 스펙트럼의 형상이 변화함에 따른 층응답스펙트럼의 형상 변화를 분석하였다. 이때 입력 스펙트럼으로부터 직접 층응답스펙트럼을 작성할 수 있는 직접법을 사용하였다. 본 연구 결과 건물 내부에 설치된 기기의 취약도해석에서는 입력스펙트럼에 내재된 보수성을 구조물의 고유진동수에 대한 스펙트럼 형상계수가 아닌 기기의 고유진동수에 따른 층응답스펙트럼 형상계수로 고려하는 것이 정확한 취약도해석 결과를 주는 것으로 나타났다.

An improved approach for multiple support response spectral analysis of a long-span high-pier railway bridge

  • Li, Lanping;bu, Yizhi;Jia, Hongyu;Zheng, Shixiong;Zhang, Deyi;Bi, Kaiming
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.193-200
    • /
    • 2017
  • To overcome the difficulty of performing multi-point response spectrum analysis for engineering structures under spatially varying ground motions (SVGM) using the general finite element code such as ANSYS, an approach has been developed by improving the modelling of the input ground motions in the spectral analysis. Based on the stochastic vibration analyses, the cross-power spectral density (c-PSD) matrix is adopted to model the stationary SVGM. The design response spectra are converted into the corresponding PSD model with appropriate coherency functions and apparent wave velocities. Then elements of c-PSD matrix are summarized in the row and the PSD matrix is transformed into the response spectra for a general spectral analysis. A long-span high-pier bridge under multiple support excitations is analyzed using the proposed approach considering the incoherence, wave-passage and site-response effects. The proposed approach is deemed to be an efficient numerical method that can be used for seismic analysis of large engineering structures under SVGM.

Viscous damping effects on the seismic elastic response of tunnels in three sites

  • Sun, Qiangqiang;Bo, Jingshan;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.639-650
    • /
    • 2019
  • Time-domain commercial codes are widely used to evaluate the seismic behavior of tunnels. Those tools offer a good insight into the performance and the failure mechanism of tunnels under earthquake loading. Viscous damping is generally employed in the dynamic analysis to consider damping at very small strains in some cases, and the Rayleigh damping is commonly used one. Many procedures to obtain the damping parameters have been proposed but they are seldom discussed. This paper illustrates the influence of the Rayleigh damping formulation on the tunnel visco-elastic behavior under earthquake. Four Rayleigh damping determination procedures and three soil shear velocity profiles are accounted for. The results show significant differences in the free-field and in the tunnel response caused by different procedures. The difference is somewhat decreased when the soil site fundamental frequency is increased. The conventional method which consists of using solely the first soil natural mode to determine the viscous damping parameters may lead to an unsafe seismic design of the tunnel. In general, using five times site fundamental frequency to obtain the damping formulation can provide relatively conservative results.

Dynamic stability evaluation of nail stabilised vertical cuts in various site classes

  • Amrita;B.R. Jayalekshmi;R. Shivashankar
    • Geomechanics and Engineering
    • /
    • 제38권4호
    • /
    • pp.421-437
    • /
    • 2024
  • The soil nailing method entails the utilisation of nails to reinforce and stabilise a zone of soil mass. This is widely used for various applications due to its effective performance under various loading conditions. The seismic response of 6m high vertical soil-nailed cut in various site classes under dynamic excitations has been investigated in this study considering various lengths and inclinations of nails. The influence of frequency content of dynamic excitation on the response of structure has been assessed through finite element analysis using time history data of three different earthquakes. The seismic stability of the nailed cut in retaining soil in various sites under El Centro, Kobe and Trinidad earthquake ground motion is evaluated based on maximum acceleration response, maximum horizontal deformation, earth pressure distribution on the wall and maximum axial force mobilised in nails. The optimum nail inclination is identified as 15° and a minimum nail length ratio of 0.7 is essential for a stable vertical cut under dynamic excitations.

대형폐기물 매립지반 액상화 평가 (The Liquefaction Assessment for Large-sized Waste Landfill Site)

  • 박인준;최승호;유병준;마호성
    • 한국재난관리표준학회지
    • /
    • 제2권2호
    • /
    • pp.69-74
    • /
    • 2009
  • 본 연구는 대형폐기물 매립장 건설에 따른 매립원지반의 액상화가능성 예측을 통해 폐기물 매립장의 내진 안전성을 평가하고자 한다. 본 연구의 목적을 달성하고자 실내시험 및 지진응답해석결과를 바탕으로 액상화 간편 및 상세 예측법을 사용하여 매립 원지반의 액상화 평가를 수행하였다. 지진응답해석 결과 최대가속도는 0.169 g(BH-14)로 산정되었으며 액상화 간편예측 결과 BH-14를 제외한 대부분 지역은 안전하였다. 액상화 간편 예측법에서 불안전했던 BH-14는 액상화 상세 예측결과 안전율 1.0이상으로 액상화에 안전하다고 판단된다.

  • PDF

Wind-induced response and loads for the Confederation Bridge -Part I: on-site monitoring data

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • 제16권4호
    • /
    • pp.373-391
    • /
    • 2013
  • This is the first of two companion papers that analyse ten years of on-site monitoring data for the Confederation Bridge to determine the validity of the original wind speeds and wind loads predicted in 1994 when the bridge was being designed. The check of the original design values is warranted because the design wind speed at the middle of Northumberland Strait was derived from data collected at shore-based weather stations, and the design wind loads were based on tests of section and full-aeroelastic models in the wind tunnel. This first paper uses wind, tilt, and acceleration monitoring data to determine the static and dynamic responses of the bridge, which are then used in the second paper to derive the static and dynamic wind loads. It is shown that the design ten-minute mean wind speed with a 100-year return period is 1.5% less than the 1994 design value, and that the bridge has been subjected to this design event once on November 7, 2001. The dynamic characteristics of the instrumented spans of the bridge including frequencies, mode shapes and damping are in good agreement with published values reported by others. The on-site monitoring data show bridge response to be that of turbulent buffeting which is consistent with the response predicted at the design stage.

국내 재해도에 상응하는 공동구의 지반변위 산정 (Hazard-Consistent Ground Displacement Estimation for Seismic Input of Underground Utility Tunnels in Korea)

  • 김대환;임영우;정연하;이혜린
    • 한국지반공학회논문집
    • /
    • 제37권12호
    • /
    • pp.7-23
    • /
    • 2021
  • 전력, 통신, 상수, 난방, 중수 등의 공급망을 구성하는 지하공동구는 도시기능을 유지하기 위한 핵심 기간망이며, 재난 및 재해로 서비스의 정지 및 일시적 중단이 발생하는 경우 대규모 사회경제적 손실을 가져온다. 본 연구에서는 지중구조물에 대한 개선된 내진설계 및 평가를 위하여 국내 지진환경에 부합하는 지진원 스펙트럼으로부터 대상 지반의 증폭 및 감쇠 효과를 반영한 시나리오 지진에 기반한 지반변위 예측 방법을 제시하였다. 코사인법으로 통용되는 기존의 단순화 가정법 및 지반응답해석과의 비교를 통해서 본 연구가 제시하는 재해도에 상응하는 지반변위 산정방법이 합리적이며 공학 실무에서 충분히 적용 가능한 것을 확인하였다.