• 제목/요약/키워드: sintering process

검색결과 1,419건 처리시간 0.024초

소결층 내에서의 코크스와 무연탄의 연소 특성 비교 연구 (A Study on the Combustion Characteristics of Coke and Anthracite in an Iron Ore Sintering Bed)

  • 양원;양광혁;최응수;이덕원;김성만;최상민
    • 한국연소학회지
    • /
    • 제9권2호
    • /
    • pp.30-37
    • /
    • 2004
  • Coal combustion in an iron ore sintering bed is a key parameter that determines quality of the sintered ores and productivity of the process. In this study, effects of the different types of coal - coke and anthracite - on the combustion in the iron ore sintering bed are investigated by modeling and experiment. Fuel characteristics of coke and anthracite are observed through a set of basic analysis and thermo-gravimetric analysis. Coke has a higher reactivity than anthracite due to the difference of surface area and density, and these characteristics are reflected in the 1-D unsteady simulation of the iron ore sintering bed. Calculation results show that different reactivity of the fuel can affect the bed combustion.

  • PDF

고압연소소결(HPCS)법을 이용한 Ti-C-Mo계 탄화물 복합체의 제조 (Preparation of Carbide Composites for Ti-C-Mo system by HPCS(High-Pressure self-Combustion Sintering) Process)

  • 최장민;이근행;류종화;조원승;최상욱
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.451-458
    • /
    • 1999
  • TiC-Mo2C composites were prepared from Ti-C-Mo system by HPCS which has a great advantage of simulataneous synthesis and sintering In this study physical properties and microstructures of the com-posites were measured and observed to compare the sintering effects of Ni and Co each other : The results showed that the role of 5 wt% Ni in the sintering of the carbide composites was superior to that of 5wt% Co and the optimum content of Mo in the Ti-C-Mo system was 20wt% The carbide composites prepared under these two conditions had the best properties with 1.0% in apparent porosity 97.6% in relative density 19.1GPa in Vickers hardness and 5.3MPa$.$m1/2 in fracture toughness.

  • PDF

소결조건 및 조성이 Fe-Si-P 소결제의 자기특성에 미치는 영향 (Effects of Sintering Condition and composition on the Magnetic Properties of Sintered Fe-Si-P)

  • 송재성;김기욱
    • 대한전기학회논문지
    • /
    • 제40권7호
    • /
    • pp.684-689
    • /
    • 1991
  • Magnetic properties of sintered Fe-Si-P alloys have been investigated as a function of sintering condition and composition. Sintering was carried in the temperature range from 1100ø C to 1400ø C in vacuum. As the sintering temperature increases, the magnetic properties of specimens were improved mainly due to the easy movement of domain wall because large pores and large grains were formed during the sintering process at high temperature. When sintered at 1400ø C, Fe-2w/o Si-0.5w/o P compact had the best mgnetic properties, but more phosphorus addition degraded magnetic properties. It appears that the degradation was caused by the formation of non-magnetic compounds such as Si P, Fe3P in the compacts with high phosphorus contents.

가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu분말과의 복합화 및 SPS 거동 (II) - II. 복합분말의 SPS와 특성 - (Production of Fe Amorphous Powders by Gas-Atomization Process and Subsequent Spark Plasma Sintering of Fe amorphous-ductile Cu Composite Powder Produced by Ball-milling Process (II) - II. SPS Behaviors of Composite Powders and their Characteristics -)

  • 김진천;김지순;김휘준;김정곤
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.326-335
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.

티타늄 스크랩을 이용한 분말제조 및 소결 성형체의 특성평가 (Property Evaluation of Ti Powder and Its Sintered Compacts Prepared by Ti Scrap)

  • 이승민;최정철;박현국;우기도;오익현
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.125-131
    • /
    • 2010
  • In this study, Ti powders were fabricated from Ti scrap by the Hydrogenation-Dehydrogenation (HDH) method. The Ti powders were prepared from the spark plasma sintering (SPS) and their microstructure was investigated. Hydrogenation reactions of Ti scrap occurred at near $450^{\circ}C$ with a sudden increase in the reaction temperature and the decreasing pressure of hydrogen gas during the hydrogenation process in the furnace. The dehydrogenation process was also carried out at $750^{\circ}C$ for 2 hrs in a vacuum of $10^{-4}$ torr. After the HDH process, deoxidation treatment was carried out with the Ca (purity: 99.5%) at $700^{\circ}C$ for 2 hrs in the vacuum system. It was found that the oxidation content of Ti powder that was deoxidized with Ca showed noticeably lower values, compared to the content obtained by the HDH process. In order to fabricate the Ti compacts, Ti powder was sintered under an applied uniaxial punch pressure of 40 MPa in the range of $900-1200^{\circ}C$ for 5 min under a vacuum of $10^{-4}$ torr. The relative density of the compact was 99.5% at $1100^{\circ}C$ and the tensile strength decreased with increasing sintering temperature. After sintering, all of the Ti compacts showed brittle fracture behavior, which occurred in an elastic range with short plastic yielding up to a peak stress. Ti improved the corrosion resistance of the Ti compacts, and the Pd powders were mixed with the HDH Ti powders.

밀링과 소결과정이 지르코니아 보철물의 완성도에 미치는 영향에 관한 문헌고찰 (Effect of milling and sintering process on integrity of zirconia prosthesis: a literature review)

  • 이기운;고경호;허윤혁;박찬진;조리라
    • 구강회복응용과학지
    • /
    • 제38권3호
    • /
    • pp.127-137
    • /
    • 2022
  • 지르코니아는 다양한 공정과정을 거쳐서 제작되며, 각각의 요소는 최종 보철물의 물성에 영향을 줄 수 있다. 특히 밀링과정과 소결과정이 모두 지르코니아 보철물의 최종 완성도(integrity)에 영향을 미칠 수 있다. 밀링머신은 대부분 초정밀 5축 가공방식을 채택하고 있으며 어떤 방식을 사용하고 밀링기구를 어떻게 관리하는가에 따라서도 결과가 달라진다. 밀링블록은 절삭의 효율성과 심미재현성에 따라 선택하는데 물성의 변화를 야기할 수 있음은 주의해야 한다. 소결방식은 입자성장과 광학적 특성에 영향을 미칠 수 있는데 속도를 조절하는 최근의 방식에 대해서는 추가적인 연구가 동반되어야 정확한 평가가 이루어질 수 있다. 소결온도 뿐 아니라 온도 유지시간도 최종결과물에 영향을 줄 수 있다.

미세구조 제어를 통한 (Nd,Dy)-Fe-B 소결자석의 보자력 증가 (The Coercivity Enhancement of (Nd,Dy)-Fe-B Sintered Magnet by Microstructure Control)

  • 김진우;김세훈;김영도
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.18-23
    • /
    • 2011
  • Sintered Nd-Fe-B magnets are widely used in many fields such as motors, generators, actuators, microwaves and so on due to their excellent magnetic properties. Many researchers have shown that the Nd-rich phase was essentially important for high magnet properties. In this study, we focused on controlling of the Nd-rich phase to enhance magnetic properties by the cyclic sintering process. Nd-Fe-B based sintered magnets were prepared by isothermal sintering and cyclic sintering processes. Magnetic properties and microstructure of the magnets were investigated. The coercivity was enhanced from 21.2 kOe to 23.27 kOe after 10 cycles of the sintering. The Nd-rich phase was effectively penetrated into the grain boundary between the $Nd_2Fe_{14}B$ grains by the cyclic sintering.

고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결 (Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering))

  • 김지헌;최상욱;조원승;조동수;오장환
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

Optimization of Spark Plasma Sintering Temperature Conditions for Enhancement of Thermoelectric Performance in Gas-Atomized Bi0.5Sb1.5Te3 Compound

  • Jeong, Kwang-yong;Lee, Chul Hee;Dharmaiah, Peyala;Hong, Soon-Jik
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.108-114
    • /
    • 2017
  • We fabricate fine (<$20{\mu}m$) powders of $Bi_{0.5}Sb_{1.5}Te_3$ alloys using a large-scale production method and subsequently consolidate them at temperatures of 573, 623, and 673 K using a spark plasma sintering process. The microstructure, mechanical properties, and thermoelectric properties are investigated for each sintering temperature. The microstructural features of both the powders and bulks are characterized by scanning electron microscopy, and the crystal structures are analyzed by X-ray diffraction analysis. The grain size increases with increasing sintering temperature from 573 to 673 K. In addition, the mechanical properties increase significantly with decreasing sintering temperature owing to an increase in grain boundaries. The results indicate that the electrical conductivity and Seebeck coefficient ($217{\mu}V/K$) of the sample sintered at 673 K increase simultaneously owing to decreased carrier concentration and increased mobility. As a result, a high ZT value of 0.92 at 300 K is achieved. According to the results, a sintering temperature of 673 K is preferable for consolidation of fine (<$20{\mu}m$) powders.

초미세 결정립을 가지는 몰리브덴의 제조 및 기계적 특성 (Fabrication of Ultra Fine Grained Molybdenum and Mechanical Properties)

  • 김세훈;서영익;김대건;석명진;김영도
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.235-241
    • /
    • 2010
  • Mo nanopowder was synthesized by ball-milling and subsequent hydrogen-reduction of $MoO_3$ powder. To fabricate ultra fine grained molybdenum, two-step sintering and spark plasma sintering process were employed. The grain size of specimen by two-step sintering and spark plasma sintering was around $0.6\;{\mu}m$ and $0.4\;{\mu}m$, respectively. Mechanical properties of ultra fine grained Mo with relative density of above 90% were significantly improved at room and high temperatures comparing to commercial bulk Mo of 99% relative density. This result was mainly explained by the grain size refinement due to diffusion-controlled sintering.