DOI QR코드

DOI QR Code

Fabrication of Ultra Fine Grained Molybdenum and Mechanical Properties

초미세 결정립을 가지는 몰리브덴의 제조 및 기계적 특성

  • Kim, Se-Hoon (Department of Materials Science and Engineering, Hanyang University) ;
  • Seo, Young-Ik (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Dae-Gun (Department of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung-Jin (Department of Materials & Metallurgical Engineering, Kangwon National University) ;
  • Kim, Young-Do (Department of Materials Science and Engineering, Hanyang University)
  • 김세훈 (한양대학교 신소재공학과) ;
  • 서영익 (한양대학교 신소재공학과) ;
  • 김대건 (한양대학교 신소재공학과) ;
  • 석명진 (강원대학교 재료금속공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Received : 2010.05.10
  • Accepted : 2010.06.04
  • Published : 2010.06.28

Abstract

Mo nanopowder was synthesized by ball-milling and subsequent hydrogen-reduction of $MoO_3$ powder. To fabricate ultra fine grained molybdenum, two-step sintering and spark plasma sintering process were employed. The grain size of specimen by two-step sintering and spark plasma sintering was around $0.6\;{\mu}m$ and $0.4\;{\mu}m$, respectively. Mechanical properties of ultra fine grained Mo with relative density of above 90% were significantly improved at room and high temperatures comparing to commercial bulk Mo of 99% relative density. This result was mainly explained by the grain size refinement due to diffusion-controlled sintering.

Keywords

References

  1. http://en.wikipedia.org/wiki/Molybdenum.
  2. J. Choi: Development and Production Process of Refractory Metals, Korea Advanced Institute of Science and Technology (1988) (Korean).
  3. Y. M. Kim, E.-P. Kim, S. Lee and J.-W. Noh: J. Korean Powder Metall. Inst., 14 (2007) 221 (Korean). https://doi.org/10.4150/KPMI.2007.14.4.221
  4. M. Katayama and S. Kibe: Int. J. Impact Eng., 26(2001) 357. https://doi.org/10.1016/S0734-743X(01)00106-3
  5. John A. Shields Jr. and Pete Lipetzky: Molybdenum Applications in the Electronics Market, Refractory Metal Markets Overview (2000).
  6. R. M. German and C. A. Labombard: Int. J. Powder Metall. Powder Technol., 18 (1982) 147.
  7. Y. Hiraoka, T. Ogusu and N. Yoshizawa: J. Alloys Compd., 381 (2004) 192. https://doi.org/10.1016/j.jallcom.2004.03.112
  8. K. S. Hwang and H. S. Huang: Acta Mater., 51 (2003) 3915. https://doi.org/10.1016/S1359-6454(03)00216-7
  9. K. S. Hwang and H. S. Huang: Int. J. Refract. Hard Mater., 22 (2004) 185. https://doi.org/10.1016/j.ijrmhm.2004.06.003
  10. I. W. Chen and X. H. Wang: Nature, 404 (2000) 168. https://doi.org/10.1038/35004548
  11. X. H. Wang, X. Y. Deng, H. L. Bai, H. Zhou, W. G.Qu, L. T. Li and I. W. Chen: J. Am. Ceram. Soc., 89(2006) 438. https://doi.org/10.1111/j.1551-2916.2005.00728.x
  12. X. H. Wang, P. L. Chen and I. W. Chen: J. Am. Ceram. Soc., 89 (2006) 431. https://doi.org/10.1111/j.1551-2916.2005.00763.x
  13. J. C. Kim, E. H. Kang, Y. S. Kwon, J. S. Kim and S.-Y.Chang: J. Korean Powder Metall. Inst., 17 (2010) 36(Korean). https://doi.org/10.4150/KPMI.2010.17.1.036
  14. S. M. Kim, T.-S. Kim, Y. D. Kim and J. G. Kim: J. Korean Powder Metall. Inst., 16 (2009) 63 (Korean). https://doi.org/10.4150/KPMI.2009.16.1.063
  15. H.-G. Kim, G.-S. Kim, S.-T. Oh, M.-J. Suk and Y. D.Kim: J. Korean Powder Metall. Inst., 14 (2007) 1(Korean). https://doi.org/10.4150/KPMI.2007.14.1.001
  16. G.-S. Kim, H.-G. Kim, D.-G. Kim, S.-T. Oh, M.-J. Sukand Y.D. Kim: J. Alloys Compd., 469 (2009) 401. https://doi.org/10.1016/j.jallcom.2008.01.149
  17. R. M. German: Sintering Theory and Practice, Pennsylvania State University, John Wiley & Sons, (1996).
  18. S. J. Kang, Sintering: Densification, Grain Growth and Microstructure, Butterworth-Heinemann, Elsevier, (2005).
  19. E. O. Hall: Proc. Phys. Sot. London B, 64 (1951) 747. https://doi.org/10.1088/0370-1301/64/9/303

Cited by

  1. Densification of Mo Nanopowders by Ultra High Pressure Compaction vol.28, pp.3, 2018, https://doi.org/10.3740/MRSK.2018.28.3.166