• Title/Summary/Keyword: sintering or non-sintering

Search Result 44, Processing Time 0.02 seconds

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration (정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용)

  • Jung, Sung-Un;Lee, Seoung-Ho;Namgung, Hyun-Min
    • Industry Promotion Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

The Electrode Characteristics of the Sintered AB5-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery (Ni-MH 2차전지용 AB5계 수소저장합금의 소결에 따른 전극 특성)

  • Chang, Sang-Min;Park, Won;Choi, Seung-Jun;Noh, Hak;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.157-164
    • /
    • 1996
  • The AB5-type metal hydride electrodes using $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$(LM : Lanthaniumrich Mischmetal) alloy powders(${\leq}200$mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrodes were sintered at $40^{\circ}C$ for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning electron microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrodes with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increased with increasing sintering time. However, there is little difference of discharge capacity for both electrodes.

  • PDF

Effect of B4C Addition on the Microstructures and Mechanical Properties of ZrB2-SiC Ceramics (ZrB2-SiC 세라믹스의 미세구조와 기계적 물성에 미치는 B4C 첨가효과)

  • Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Kim, Kyung-Ja;Nahm, Sahn;Kim, Seong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.578-582
    • /
    • 2010
  • $ZrB_2$ has a melting point of $3245^{\circ}C$ and a relatively low density of $6.1\;g/cm^3$, which makes this a candidate for application to ultrahigh temperature environments over $2000^{\circ}C$. Beside these properties, $ZrB_2$ is known to have excellent resistance to thermal shock and oxidation compared with other non-oxide engineering ceramics. In order to enhance such oxidation resistance, SiC was frequently added to $ZrB_2$-based systems. Due to nonsinterability of $ZrB_2$-based ceramics, research on the sintering aids such as $B_4C$ or $MoSi_2$ becomes popular recently. In this study, densification and high-temperature properties of $ZrB_2$-SiC ceramics especially with $B_4C$ are investigated. $ZrB_2$-20 vol% SiC system was selected as a basic composition and $B_4C$ or C was added to this system in some extents. Mixed powders were sintered using hot pressing (HP). With sintered bodies, densification behavior and high-temperature (up to $1400^{\circ}C$) properties such as flexural strength, hardness, and so on were examined.

The Effect of Grain Boundary Diffusion on the Boundary Structure and Electrical Characteristics of Semiconductive $SrTiO_3$ Ceramics (입계확산에 의한 반도성 $SrTiO_3$ 세라믹스의 입계구조 및 전기적 특성 변화)

  • 김태균;조남희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Semiconductive SrTiO3 ceramic bodies were prepared by conventional ceramic powder processes in-cluding sintering in a reducing atmosphere. Sodium or potassium ions were diffused from the surface of the sintered bodies into the inner region using thermal diffusion process at 800-120$0^{\circ}C$. The effects of such ther-mal treatments on the electrical and chemical characteristics of the grain boundaries were investigated. The presence of sodium or potassium ions at grain boundaries produces non-linear current-voltage behaviors, electrical boundary potential barriers of 0.1-0.2eV, and threshold voltages of 10-70V. The diffused ions form diffusion layers with thicknesses of 20-50nm near the grain boundaries, reducing the concentration of strontium and oxygen.

  • PDF

Vacuum Carburizing System for Powdered Metal Parts & Components

  • Kowakewski, Janusz;Kucharski, Karol
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1018-1021
    • /
    • 2006
  • Powdered metal parts and components may be carburized successfully in a vacuum furnace by combining carburizing technology $VacCarb^{TM}$ with a hi-tech control system. This approach is different from traditional carburizing methods, because vacuum carburizing is a non-equilibrium process. It is not possible to set the carbon potential as in a traditional carburizing atmosphere and control its composition in order to obtain a desired carburized case. This paper presents test results that demonstrate that vacuum carburizing system $VacCarb^{TM}$ carburized P.M. materials faster than traditional steel with acceptable results. In the experiments conducted, PM samples with the lowest density and open porosity showed a dramatic increase in the surface carbon content up to 2.5%C and a 3 times deeper case. Currently the boost-diffusion technique is applied to control the surface carbon content and distribution in the case. In the first boost step, the flow of the carburizing gas has to be sufficient to saturate the austenite, while avoiding soot deposition and formation of massive carbides. To accomplish this goal, the proper gas flow rate has to be calculated. In the case of P.M. parts, more carbon can be absorbed by the part's surface because of the additional internal surface area created by pores present in the carburized case. This amount will depend on the density of the part, the densification grade of the surface layer and the stage of the surface. "as machined" or "as sintered". It is believed that enhanced gas diffusion after initial evacuation of the P.M. parts leads to faster carburization from within the pores, especially when pores are open . surface "as sintered" and interconnected . low density. A serious problem with vacuum carburizing is delivery of the carbon in a uniform manner to the work pieces. This led to the development of the different methods of carburizing gas circulation such as the pulse/pump method or the pulse/pause technique applied in SECO/WARWICK's $VacCarb^{TM}$ Technology. In both cases, each pressure change may deliver fresh carburizing atmosphere into the pores and leads to faster carburization from within the pores. Since today's control of vacuum carburizing is based largely on empirical results, presented experiments may lead to better understanding and improved control of the process.

  • PDF

A Study on Body Temperature Measurement of Woven Textile Electrode Using Lock-In-Amp based on Microprocessor (마이크로 프로세서 기반 Lock-In-Amp를 이용한 텍스타일 직물전극의 체온 측정에 관한 연구)

  • Lee, Kang-Hwi;Lee, Sung-Su;Lee, Jeong-Whan;Song, Ha-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1141-1148
    • /
    • 2017
  • Generally, a thermistor made by sintering a metal oxide is widely used to measure the ambient temperature. This thermistor is widely used not only for industrial use but also for medical use because of its excellent sensitivity, durability, temperature change characteristics and low cost. In particular, the normal body temperature is 36.9 degrees relative to the armpit temperature, and it is most closely related to the circulating blood flow. Previous studies have shown that body temperature changes during biomechanical changes and body temperature changes by anomalous signs or illnesses. Therefore, in this study, we propose a Lock-In-Amp design to detect minute temperature changes of clothing and thermistor wired by a preacher as a method to regularly measure body temperature in daily life. Especially, it is designed to measure the minute resistance change of the thermistor according to body temperature change even in a low-cost microprocessor environment by using a micro-processor-based Lock-In-Amp, and a jacquard and the thermistor is arranged so as to be close to the side, so that the reference body temperature can be easily measured. The temperature was measured and stored in real time using short-range wireless communication for non - restraint temperature monitoring. A baby vest was made to verify its performance through temperature experiments for infants. The measurement of infant body temperature through the existing skin sensor or thermometer has limitations in monitoring infant body temperature for a long time without restriction. However, it can be overcome by using the embroidery fabric based micro temperature monitoring wireless monitoring device proposed in this study.

Transmission Electron Microscopy Investigation of Hot-pressed ZrB2-SiC with B4C Additive

  • Kim, Seongwon;Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.462-466
    • /
    • 2015
  • This paper reports the microstructure of hot-pressed $ZrB_2$-SiC ceramics with added $B_4C$ as characterized by transmission electron microscopy. $ZrB_2$ has a melting point of $3245^{\circ}C$, a relatively low density of $6.1g/cm^3$, and specific mechanical properties at an elevated temperature, making it a candidate for application to environments with ultra-high temperatures which exceed $2000^{\circ}C$. Due to the non-sinterability of $ZrB_2$-based ceramics, research on sintering aids such as $B_4C$ or $MoSi_2$ has become prominent recently. From TEM investigations, an amorphous layer with contaminant oxide is observed in the vicinity of $B_4C$ grains remaining in hot-pressed $ZrB_2$-SiC ceramics with $B_4C$ as an additive. The effect of a $B_4C$ addition on the microstructure of this system is also discussed.

Manufacturing of Copper(II) Oxide Powder for Electroplating from NaClO3 Type Etching Wastes

  • Hong, In Kwon;Lee, Seung Bum;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2020
  • In this study, copper (II) oxide powder for electroplating was prepared by recovering CuCl2 from NaClO3 type etching wastes via recovered non-sintering two step chemical reaction. In case of alkali copper carbonate [mCuCo3·nCu(OH)2], first reaction product, CuCo3 is produced more than Cu(OH)2 when the reaction molar ratio of sodium carbonate is low, since m is larger than n. As the reaction molar ratio of sodium carbonate increased, m is larger than n and Cu(OH)2 was produced more than CuCO3. In the case of m has same values as n, the optimum reaction mole ratio was 1.44 at the reaction temperature of 80℃ based on the theoretical copper content of 57.5 wt. %. The optimum amount of sodium hydroxide was 120 g at 80℃ for production of copper (II) oxide prepared by using basic copper carbonate product of first reaction. At this time, the yield of copper (II) oxide was 96.6 wt.%. Also, the chloride ion concentration was 9.7 mg/L. The properties of produced copper (II) oxide such as mean particle size, dissolution time for sulfuric acid, and repose angle were 19.5 mm, 64 second, and 34.8°, respectively. As a result of the hole filling test, it was found that the copper oxide (II) prepared with 120 g of sodium hydroxide, the optimum amount of basic hydroxide for copper carbonate, has a hole filling of 11.0 mm, which satisfies the general hole filling management range of 15 mm or less.

Effect of Sintering Temperature on Dielectric Properties of 72 wt%(Al2O3):28 wt%(SiO2) Ceramics

  • Sahu, Manisha;Panigrahi, Basanta Kumar;Kim, Hoe Joon;Deepti, PL;Hajra, Sugato;Mohanta, Kalyani
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.495-501
    • /
    • 2020
  • The various sintered samples comprising of 72 wt% (Al2O3) : 28 wt% (SiO2) based ceramics were fabricated using a colloidal processing route. The phase analysis of the ceramics was performed using an X-ray diffractometer (XRD) at room temperature confirming the presence of Al2O5Si and Al5.33Si0.67O9.33. The surface morphology of the fracture surface of the different sintered samples having different sizes of grain distribution. The resistive and capacitive properties of the three different sintered samples at frequency sweep (1 kHz to 1 MHz). The contribution of grain and the non-Debye relaxation process is seen for various sintered samples in the Nyquist plot. The ferroelectric loop of the various sintered sample shows a slim shape giving rise to low remnant polarization. The excitation performance of the sample at a constant electric signal has been examined utilizing a designed electrical circuit. The above result suggests that the prepared lead-free ceramic can act as a base for designing of dielectric capacitors or resonators.

Evaluation of Surface Macrostructure and Mechanical Properties of Porous Surface Ti-HA Biomaterial Fabricated by a Leaching Process (Leaching 공정으로 제조한 표면 다 기공 Ti-HA 생체재료의 표면 조직 및 기계적 성질의 평가)

  • Woo, Kee Do;Kang, Duck Soo;Moon, Min Seok;Kim, Sang Hyuk;Liu, Zhiguang;Omran, Abdel-Nasser
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • Ti-6Al-4V ELI alloy, which is commonly used as a biomaterial, is associated with a high elastic modulus and poor biocompatibility. This alloy presents a variety of problems on several areas. Therefore, the development of good non-toxic biocompatible biomaterials with a low elastic modulus is necessary. Particularly, hydroxyapatite (HA) is an attractive material for human tissue implantation. This material is widely used as artificial bone due to its good biocompatibility and similar composition to human bone. Many scientists have studied the fabrication of HA as a biomaterial. However, applications of bulk HA compact are hindered by the low strength of HA when it is sintered. Therefore, HA has been coated on Ti or Ti alloy to facilitate good bonding between tissue and the HA surface. However, there are many problems when doing this, such as the low bonding strength between HA and Ti due to the different thermal expansion coefficients and mechanical properties. In this study, a Ti-HA composite with a porous surface was successfully fabricated by pulse current activated sintering (PCAS) and a subsequent leaching process.