• 제목/요약/키워드: sintering behavior

검색결과 706건 처리시간 0.033초

PNN-PZ-PT 세라믹스의 소결 거동에 미치는 Cd-doping 효과 (The Effect of Cd-Dopping on Sintering behavior of PNN-PT-PZ Ceramics)

  • 조정호;김호기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.217-220
    • /
    • 1995
  • By substituting Cd$\^$2+/ into both A-site and B-site in PNN-PZ-PT ternary perovskite material, it is possible to determine the effects of the substitution site of Cd$\^$2+/ on sintering behavior. Sintering was performed in the temperature range from 1000$^{\circ}C$ to 1300$^{\circ}C$. The substitution site of Cd$\^$2+/ is identified by XPS spectra. Although Cd$\^$2+/ is substituted into both A-site and B-site in PNN-PZ-PT, Cd$\^$2+/ prefers A-site to B-site. The density is influenced by substitution site of Cd$\^$2+/. If Cd$\^$2+/ replaces Pv$\^$2+/, weight gain is observed during sinterig process. On the contrary, if Cd$\^$2+/ replaces Ni$\^$2+/, weight loss is promoted during sintering. From these weight changes, it is believed that Cd$\^$2+/ changes the bonding strength between B-site cation and oxygen of octahedron in perovskite structure. The changes of lattice parameters as a function of Cd$\^$2+/ content were consistent with those of the bonding strength. The densities of A-site-doped compositions were higher than those of B-site-doped composition.

  • PDF

탄탈륨 및 탄탈륨-텅스텐 합금 분말의 소결성 및 미세조직 연구 (Sintering Behavior and Microstructures of Tantalum and Tantalum-Tungsten Alloys Powders)

  • 김영무;양성호;이성;이성호;노준웅
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.373-380
    • /
    • 2020
  • The purpose of this study is to investigate the densification behavior and the corresponding microstructural evolution of tantalum and tantalum-tungsten alloy powders for explosively formed liners. The inherent inhomogeneous microstructures of tantalum manufactured by an ingot metallurgy might degrade the capability of the warhead. Therefore, to overcome such drawbacks, powder metallurgy was incorporated into the near-net shape process in this study. Spark plasma-sintered tantalum and its alloys with finer particle sizes exhibited higher densities and lower grain sizes. However, they were contaminated from the graphite mold during sintering. Higher compaction pressures in die and isostatic compaction techniques also enhanced the sinterability of the tantalum powders; however, a full densification could not be achieved. On the other hand, the powders exhibited full densification after being subjected to hot isostatic pressing over two times. Consequently, it was found that the hot isostatic-pressed tantalum might exhibit a lower grain size and a higher density as compared to those obtained in previous studies.

Ce0.8Gd0.2O1.9 세라믹스의 소결거동과 전기적 특성에 미치는 Fe2O3의 첨가효과 (Effects of Fe2O3 Additions on Sintering Behavior and Electrical Property of Ce0.8Gd0.2O1.9 Ceramics)

  • 최광훈;이주신;최용규
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.526-531
    • /
    • 2007
  • The sintering behavior and electrical property of $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics were investigated with the iron oxide concentration ranging from 0 to 5 mol%. Both the sintered density and grain size were found to increase up to 2 mol% $Fe_2O_3$, and then to decrease with further additions. At a higher $Fe_2O_3$ content above 3 mol%, grain size decreased by a pinning effect induced by different shape grains. The electrical conductivity was also increased with increasing $Fe_2O_3$ content up to 2 mol%. Total conductivity of 2 mol% $Fe_2O_3-added$ specimen showed the maximum conductivity of $2{\times}10^{-2}{\Omega}{\cdot}cm^{-1}$ at $500^{\circ}C$. The addition of $Fe_2O_3$ was found to promote the sintering properties and electrical conductivities of $Gd_2O_3-dope\;CeO_2$.

Effect of Nickel Addition on Sintering Behavior and Electrical Conductivity of BaCe0.35Zr0.5Y0.15O3-δ

  • An, Hyegsoon;Shin, Dongwook;Ji, Ho-Il
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.91-97
    • /
    • 2019
  • The effect of different Ni-containing additives on the sintering behavior and electric conductivity of the proton conducting electrolyte $BaCe_{0.35}Zr_{0.5}Y_{0.15}O_{3-{\delta}}$ (BCZY5) was investigated. Ni-doped, NiO-added, and $BaY_2NiO_5$(BYN)-added (all 4 mol%) BCZY5 samples were prepared by the solid state synthesis method and sintered at $1400^{\circ}C$ for 6 h. Among the three samples, the onset of densification was observed at the lowest temperature for NiO-added BCZY5, which is attributed to the formation of an intermediate phase at a low melting temperature. The BYN-added sample, where no consumption of the constitutional elements of the electrolyte was expected during sintering, exhibited the highest electrical conductivity whereas the doped sample had the lowest conductivity. The electrical conductivities at $500^{\circ}C$ under humid argon atmosphere were measured to be 2.0, 4.8, and $6.2mS{\cdot}cm^{-1}$ for Ni-doped and NiO- and BYN-added samples, respectively.

Waste to shield: Tailoring cordierite/mullite/zircon composites for radiation protection through controlled sintering and Y2O3 addition

  • Celal Avcioglu;Recep Artir
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2767-2774
    • /
    • 2024
  • In this study, investment casting shell waste successfully utilized to produce cordierite/mullite/zircon composites. Green pellets, consisting of investment casting shell waste, alumina, and magnesia, were prepared and sintered at temperatures between 1250 and 1350 ℃. The influence of the sintering temperature on the crystalline phase composition, densification behavior, flexural strength, microstructure, and radiation shielding properties of the cordierite/mullite/zircon composites is investigated. Phase analysis showed that characteristic cordierite peaks appear at 1250 ℃, but the complete conversation of silica from investment casting shell waste into cordierite requires a sintering temperature of at least 1300 ℃. Notably, the cordierite/mullite/zircon composite sintered at 1350 ℃ exhibited a sixfold increase in flexural strength compared to the ceramic composite directly fabricated from investment casting shell waste at the same sintering temperature. Furthermore, the effect of Y2O3 addition on composites' radiation shielding properties is investigated. The results show that the Y2O3 addition improves densification behavior, enhancing the shielding capabilities of the composites against fast neutron and gamma radiation. Our findings suggest that the developed ceramic composites show significant potential for gamma-ray and neutron shielding applications.

Improved Injection Behavior with the Addition of Granulated β-Tricalcium Phosphate in Brushite Bone Cement

  • Jo, Hyun-Ho;Oh, Kyung-Sik
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.590-596
    • /
    • 2018
  • To improve the injection behavior of brushite cement, dense ${\beta}-Ca_3(PO_4)_2$ (${\beta}-TCP$) granules were added to the starting material. The spherical ${\beta}-TCP$ granules prepared by spray-drying and subsequent sintering at $1000{\sim}1200^{\circ}C$ accounted for fractions of from 0.5 to 0.7 of the total ${\beta}-TCP$. The injection behavior was evaluated by measuring the injected mass divided by the loaded mass of paste in the syringe pump. The injected amount was increased with the increase in the fraction and sintering temperature of ${\beta}-TCP$ granules, except at $1200^{\circ}C$. The increase in the fraction of ${\beta}-TCP$ and its sintering temperature resulted in a decrease in the plastic limit, which is the volume of water required to liquefy the compact. The rest water could be utilized in the cement with the reduced plastic limit for improved injectability. The amounts of rest water assigned for powdery phase were estimated, and correlated with the injectability of paste.

다공성 티타늄 임플란트의 담지물질 방출거동 (Release behavior of embedding materials on the porous Ti implants)

  • 김영훈;김남중
    • 대한치과기공학회지
    • /
    • 제36권3호
    • /
    • pp.179-184
    • /
    • 2014
  • Purpose: This study was performed to investigate the release behavior of bioactive materials as a BMP-2 embedding on the porous titanium implant. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. Specimens diameter and height were 4mm and 10mm. Embedding materials were used to stamp ink. Sectional images, porosity and release behavior of porous Ti implants were evaluated by scanning electron microscope(SEM), mercury porosimeter and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $8.993{\mu}m$ and 8.918%. Embedding materials were released continually and slowly. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. Therefore bioactive materials will be able to embedding to porous Ti implants. If the development of the fusion implant of the bioactive material will be able to have the chance to several patients.

고상반응에 의하여 제조된 Li2ZrO3의 이산화탄소 흡수 및 소결 특성 (Carbon Dioxide Sorption Properties and Sintering Behavior of Lithium Zirconate Prepared by Solid-State Reaction)

  • 우상국;이시우;유지행
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.309-314
    • /
    • 2006
  • We synthesized lithium zirconate using solid-state reaction and analyzed thermal properties (TG/DTA) of starting materials and the synthesized one. When $Li_2ZrO_3$ powder was exposed to $CO_2$ environment at $500^{\circ}C$, 93% of the theoretical absorption weight was gained within 280 min with fairly high sorption rate. Almost all the absorbed $CO_2$ was generated by heating the sample to $800^{\circ}C$. We also investigated densification behavior of $Li_2ZrO_3$ under $CO_2$ environment. By sintering $Li_2ZrO_3$ at $760^{\circ}C$ using 2-step process, we obtained dense product, composed mainly of $Li_2ZrO_3\;and\;ZrO_2$, with relative density of 92%.

Co 액상 내에 공존하는 (Ti,W)(C,N)과 WC입자의 성장 거동 (Growth Behavior of (Ti,W)(C,N) and WC grains in a Co Matrix)

  • 이보아;윤병권;강석중
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.165-170
    • /
    • 2004
  • Growth behavior of two different types of grains, faceted and rounded, in a liquid matrix has been studied in the (75WC-25TiCN)-30Co system. Powder samples were sintered above the eutectic temperature for various times under a carbon saturated condition. (Ti,W)(C,N) grains with a rounded shape and WC grains with a faceted shape coexisted in the same Co based liquid. With increasing sintering time, the average size of (Ti.W)(C,N) grains increased continuously and very large WC grains appeared. The growth of rounded (Ti,W)(C,N) grains followed a cubic law, r^3-r^3_0$=kt, where r is the average size of the grains, $r_0$ the initial average size, k the proportionality constant and t the sintering time. indicating a diffusion-controlled growth. On the other hand, the growth of the faceted WC grains resulted in a bimodal grain size distribution, showing an abnormal grain growth. These observations show that the growth behavior of different types of grains is governed by their shape, faceted or rounded, even in the same liquid matrix.

Effect of Low-Temperature Sintering on Electrical Properties and Aging Behavior of ZVMNBCD Varistor Ceramics

  • Nahm, Choon-Woo
    • 한국재료학회지
    • /
    • 제30권10호
    • /
    • pp.502-508
    • /
    • 2020
  • This paper focuses on the electrical properties and stability against DC accelerated aging stress of ZnO-V2O5-MnO2-Nb2O5-Bi2O3-Co3O4-Dy2O3 (ZVMNBCD) varistor ceramics sintered at 850 - 925 ℃. With the increase of sintering temperature, the average grain size increases from 4.4 to 11.8 mm, and the density of the sintered pellets decreases from 5.53 to 5.40 g/㎤ due to the volatility of V2O5, which has a low melting point. The breakdown field abruptly decreases from 8016 to 1,715 V/cm with the increase of the sintering temperature. The maximum non-ohmic coefficient (59) is obtained when the sample is sintered at 875 ℃. The samples sintered at below 900 ℃ exhibit a relatively low leakage current, less than 60 mA/㎠. The apparent dielectric constant increases due to the increase of the average grain size with the increase of the sintering temperature. The change tendency of dissipation factor at 1 kHz according to the sintering temperature coincides with the tendency of the leakage current. In terms of stability, the samples sintered at 900 ℃ exhibit both high non-ohmic coefficient (45) and excellent stability, 0.8% in 𝚫EB/EB and -0.7 % in 𝚫α/α after application of DC accelerated aging stress (0.85 EB/85 ℃/24 h).