DOI QR코드

DOI QR Code

Sintering Behavior and Microstructures of Tantalum and Tantalum-Tungsten Alloys Powders

탄탈륨 및 탄탈륨-텅스텐 합금 분말의 소결성 및 미세조직 연구

  • Received : 2020.08.31
  • Accepted : 2020.09.25
  • Published : 2020.10.28

Abstract

The purpose of this study is to investigate the densification behavior and the corresponding microstructural evolution of tantalum and tantalum-tungsten alloy powders for explosively formed liners. The inherent inhomogeneous microstructures of tantalum manufactured by an ingot metallurgy might degrade the capability of the warhead. Therefore, to overcome such drawbacks, powder metallurgy was incorporated into the near-net shape process in this study. Spark plasma-sintered tantalum and its alloys with finer particle sizes exhibited higher densities and lower grain sizes. However, they were contaminated from the graphite mold during sintering. Higher compaction pressures in die and isostatic compaction techniques also enhanced the sinterability of the tantalum powders; however, a full densification could not be achieved. On the other hand, the powders exhibited full densification after being subjected to hot isostatic pressing over two times. Consequently, it was found that the hot isostatic-pressed tantalum might exhibit a lower grain size and a higher density as compared to those obtained in previous studies.

Keywords

References

  1. R. Fountaina and C. McKinsey: Columbium and tantalum, F. Sisco and E. Epremian (Ed.), John Wiley and Sons, New York, USA, (1962) 198.
  2. S. Cardonne, P. Kumar, C. Muchaluk and H. Schwartz: Int. J. Refract. Met. Hard. Mater., 13 (1995) 187. https://doi.org/10.1016/0263-4368(95)94023-R
  3. L. Zheng, G. Zhang, T. Lee, M. Gorley, Y. Wang, C. Xiao and Z. Li: Mater. Des., 61 (2014) 61. https://doi.org/10.1016/j.matdes.2014.04.055
  4. J.-H. Lee, H.-J. Kim and K.-A. Lee: J. Korean Powder Metall. Inst., 22 (2015) 32. https://doi.org/10.4150/KPMI.2015.22.1.32
  5. J.-H. Lee, J.-W. Kim and K.-A. Lee: J. Korean Powder Metall. Inst., 23 (2016) 8. https://doi.org/10.4150/KPMI.2016.23.1.8
  6. H. Park, N. Barton, J. Belof, K. Blobaum, R. Caballo, A. Comley, B. Maddox, M. May, S. Pollaine, S. Prisbrey, B. Remington, R. Rudd, D. Swift, R. Wallace, M. Wilson, A. Nikroo and E. Giraldez: Proc. AIP Conf., 1426 (2012) 1371.
  7. J. Muller: Tantalum, E. Chen, E. S. Chen, A. Crowson, E. Lavernia, W. Ebihara, P. Kumar (Ed.), Minerals, Metals & Materials Society, (1996) 301.
  8. J. House, P. Flater, R. Harris and R. Angelis: AFRL-RWEG-TR-2011-032, Air Force Research Laboratory Technical report, (2011).
  9. P. Flater, J. House, J. O'Brien and W. Hosford: AFRLRW-EG-TR-2007-7412, Air Force Research Laboratory Technical report, August, (2007).
  10. J. House, P. Flater, R. Harris and R. Angelis: AFRL-RWEG-TR-2011-032, Air Force Research Laboratory Technical report, (2011).
  11. en.wikipedia.org/wiki/explosive formed penetrator.
  12. W. Walters and J. Zukas: Fundamentals of shaped charges, John Wiley & Sons, New York, USA, (1989).
  13. J. Oh, B. Lee, G. Choi, H. Kim and J. Lim: Mat. Sci. Tech., 29 (2013) 542. https://doi.org/10.1179/1743284712Y.0000000178
  14. E. Faccini: Tantalum, E. Chen, E. S. Chen, A. Crowson, E. Lavernia, W. Ebihara, P. Kumar (Ed.), Minerals, Metals & Materials Society, (1996) 73.
  15. J. Muller and P. Dinh: In: A. Bosh, R. J. Dowding (Ed.), Tungsten and Refractory Metals, McLean: MPIF, (1994) 573.
  16. S. Yoo, T. Sudarshan, K. Sethram, G. Subhash and R. Dowding: Nanostruct. Mater., 12 (1999) 23. https://doi.org/10.1016/S0965-9773(99)00059-8
  17. F. Funkler: In: A. Bosh, R. J. Dowding (Ed.), Tungsten and Refractory Metals, McLean: MPIF, (1994) 531.
  18. Q. Xu, R. Hayes and E. Lavernia: Script. Mater., 45 (2001) 447. https://doi.org/10.1016/S1359-6462(01)01044-2
  19. S. Bingert, V. Varagas and H. Sheinberg: Tantalum, E. Chen, E. S. Chen, A. Crowson, E. Lavernia, W. Ebihara, P. Kumar (Ed.), Minerals, Metals & Materials Society, (1996) 95.