Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.10.526

Effects of Fe2O3 Additions on Sintering Behavior and Electrical Property of Ce0.8Gd0.2O1.9 Ceramics  

Choi, Kwang-Hoon (Department of Advanced Materials Engineering, Kyungsung University)
Lee, Joo-Sin (Department of Advanced Materials Engineering, Kyungsung University)
Choi, Yong-Gyu (Gyeongbuk Regional Innovation Agency)
Publication Information
Korean Journal of Materials Research / v.17, no.10, 2007 , pp. 526-531 More about this Journal
Abstract
The sintering behavior and electrical property of $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics were investigated with the iron oxide concentration ranging from 0 to 5 mol%. Both the sintered density and grain size were found to increase up to 2 mol% $Fe_2O_3$, and then to decrease with further additions. At a higher $Fe_2O_3$ content above 3 mol%, grain size decreased by a pinning effect induced by different shape grains. The electrical conductivity was also increased with increasing $Fe_2O_3$ content up to 2 mol%. Total conductivity of 2 mol% $Fe_2O_3-added$ specimen showed the maximum conductivity of $2{\times}10^{-2}{\Omega}{\cdot}cm^{-1}$ at $500^{\circ}C$. The addition of $Fe_2O_3$ was found to promote the sintering properties and electrical conductivities of $Gd_2O_3-dope\;CeO_2$.
Keywords
Gadolinia-doped ceria; Ion oxide; Sintering; Electrical conductivity;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 P. L. Chen and I. W. Chen, J. Am. Ceram. Soc., 76, 1577 (1993)   DOI   ScienceOn
2 H. Yoshida, K. Miura, J. Fujita and T. Inagaki, J. Am. Ceram. Soc., 82, 219 (1999)   DOI   ScienceOn
3 C. M. Kleinlogel and L. J. Gauckler, Solid State Ionics, 135, 567 (2000)   DOI   ScienceOn
4 K. Yamashita, K. V. Ramanujachary and M. Greenblatt, Solid State Ionics, 81, 53 (1995)   DOI   ScienceOn
5 J. S. Lee, J. Electroceram., 17, 709 (2006)   DOI
6 J. Ma, T. S. Zhang, L. B. Kong, P. Hing and S. H. Chan, J. Power Sources, 132, 71 (2004)   DOI   ScienceOn
7 T. Zhang, P. Hing, H. Huang and J. Kilner, J. Europ. Ceram. Soc., 21, 2221 (2001)   DOI   ScienceOn
8 J. S. Lee, K. H. Choi, B. K. Ryu, B. C. Shin and I. S. Kim, Mater. Res. Bull., 39, 2025 (2004)   DOI   ScienceOn
9 A. Overs and I. Riess, J. Am. Ceram. Soc., 65, 606 (1982)   DOI   ScienceOn
10 J. V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa and M. Dokiya, J. Am. Ceram. Soc., 80, 933 (1997)   DOI   ScienceOn
11 Y. C. Zhou and M. N. Rahaman, J. Mater. Res., 8, 1689 (1993)   DOI
12 A. K. Bhattacharya, A. Hartridge, K. K. Mallick and J. L. Woodhard, J. Mater. Sci., 31, 5005 (1996)   DOI
13 J. V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa and M. Dokiya, Solid State Ionics, 86-88, 1255 (1996)   DOI   ScienceOn
14 K. Higashi, K. Sonoda, H. Ono, S. Sameshima and Y. Hirata, J. Mater. Res., 14, 957 (1999)   DOI   ScienceOn
15 J. S. Lee, K. H. Choi, B. K. Ryu, B. C. Shin and I. S. Kim, Ceramics International, 39, 807 (2004)   DOI   ScienceOn
16 J. S. Lee, K. H. Choi, B. K. Ryu, B. C. Shin and I. S. Kim, J. Mater. Sci., 40, 1153 (2005)   DOI
17 P. L. Chen and I. W. Chen, J. Am. Ceram. Soc., 79, 1793 (1996)   DOI   ScienceOn
18 C. Moure, J. R. Jurado and P. Dum, Electroceramics V, 139 (1995)
19 C. M. Kleinlogel and L. J. Gauckler, J. Electroceram., 5, 231 (2000)   DOI   ScienceOn
20 B. Rambabu, S. Ghosh and H. Jena, J. Mater. Sci., 41, 7530 (2006)   DOI
21 T. Zhang, P. Hing, H. Huang and J. Kilner, J. Europ. Ceram. Soc., 22, 27 (2002)   DOI   ScienceOn
22 T. S. Zhang, J. Ma, S. H. Chan and J. A. Kilner, J. Electrochem. Soc., 151, J84 (2004)   DOI   ScienceOn