Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.5.373

Sintering Behavior and Microstructures of Tantalum and Tantalum-Tungsten Alloys Powders  

Kim, Youngmoo (Agency for Defense Development)
Yang, Sung Ho (Agency for Defense Development)
Lee, Seong (Agency for Defense Development)
Lee, Sung Ho (Agency for Defense Development)
Noh, Joon-Woong (Agency for Defense Development)
Publication Information
Journal of Powder Materials / v.27, no.5, 2020 , pp. 373-380 More about this Journal
Abstract
The purpose of this study is to investigate the densification behavior and the corresponding microstructural evolution of tantalum and tantalum-tungsten alloy powders for explosively formed liners. The inherent inhomogeneous microstructures of tantalum manufactured by an ingot metallurgy might degrade the capability of the warhead. Therefore, to overcome such drawbacks, powder metallurgy was incorporated into the near-net shape process in this study. Spark plasma-sintered tantalum and its alloys with finer particle sizes exhibited higher densities and lower grain sizes. However, they were contaminated from the graphite mold during sintering. Higher compaction pressures in die and isostatic compaction techniques also enhanced the sinterability of the tantalum powders; however, a full densification could not be achieved. On the other hand, the powders exhibited full densification after being subjected to hot isostatic pressing over two times. Consequently, it was found that the hot isostatic-pressed tantalum might exhibit a lower grain size and a higher density as compared to those obtained in previous studies.
Keywords
Tantalum; Tantalum-tungsten alloy; Spark plasma sintering; Sintering; Microstructure;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 R. Fountaina and C. McKinsey: Columbium and tantalum, F. Sisco and E. Epremian (Ed.), John Wiley and Sons, New York, USA, (1962) 198.
2 S. Cardonne, P. Kumar, C. Muchaluk and H. Schwartz: Int. J. Refract. Met. Hard. Mater., 13 (1995) 187.   DOI
3 L. Zheng, G. Zhang, T. Lee, M. Gorley, Y. Wang, C. Xiao and Z. Li: Mater. Des., 61 (2014) 61.   DOI
4 J.-H. Lee, H.-J. Kim and K.-A. Lee: J. Korean Powder Metall. Inst., 22 (2015) 32.   DOI
5 J.-H. Lee, J.-W. Kim and K.-A. Lee: J. Korean Powder Metall. Inst., 23 (2016) 8.   DOI
6 H. Park, N. Barton, J. Belof, K. Blobaum, R. Caballo, A. Comley, B. Maddox, M. May, S. Pollaine, S. Prisbrey, B. Remington, R. Rudd, D. Swift, R. Wallace, M. Wilson, A. Nikroo and E. Giraldez: Proc. AIP Conf., 1426 (2012) 1371.
7 J. Muller: Tantalum, E. Chen, E. S. Chen, A. Crowson, E. Lavernia, W. Ebihara, P. Kumar (Ed.), Minerals, Metals & Materials Society, (1996) 301.
8 P. Flater, J. House, J. O'Brien and W. Hosford: AFRLRW-EG-TR-2007-7412, Air Force Research Laboratory Technical report, August, (2007).
9 J. House, P. Flater, R. Harris and R. Angelis: AFRL-RWEG-TR-2011-032, Air Force Research Laboratory Technical report, (2011).
10 en.wikipedia.org/wiki/explosive formed penetrator.
11 W. Walters and J. Zukas: Fundamentals of shaped charges, John Wiley & Sons, New York, USA, (1989).
12 J. Oh, B. Lee, G. Choi, H. Kim and J. Lim: Mat. Sci. Tech., 29 (2013) 542.   DOI
13 E. Faccini: Tantalum, E. Chen, E. S. Chen, A. Crowson, E. Lavernia, W. Ebihara, P. Kumar (Ed.), Minerals, Metals & Materials Society, (1996) 73.
14 J. Muller and P. Dinh: In: A. Bosh, R. J. Dowding (Ed.), Tungsten and Refractory Metals, McLean: MPIF, (1994) 573.
15 S. Yoo, T. Sudarshan, K. Sethram, G. Subhash and R. Dowding: Nanostruct. Mater., 12 (1999) 23.   DOI
16 J. House, P. Flater, R. Harris and R. Angelis: AFRL-RWEG-TR-2011-032, Air Force Research Laboratory Technical report, (2011).
17 F. Funkler: In: A. Bosh, R. J. Dowding (Ed.), Tungsten and Refractory Metals, McLean: MPIF, (1994) 531.
18 S. Bingert, V. Varagas and H. Sheinberg: Tantalum, E. Chen, E. S. Chen, A. Crowson, E. Lavernia, W. Ebihara, P. Kumar (Ed.), Minerals, Metals & Materials Society, (1996) 95.
19 Q. Xu, R. Hayes and E. Lavernia: Script. Mater., 45 (2001) 447.   DOI