• Title/Summary/Keyword: sink strength

Search Result 61, Processing Time 0.022 seconds

The Role of Rice Vacuolar Invertase2 in Seed Size Control

  • Lee, Dae-Woo;Lee, Sang-Kyu;Rahman, Md Mizanor;Kim, Yu-Jin;Zhang, Dabing;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.711-720
    • /
    • 2019
  • Sink strength optimizes sucrose import, which is fundamental to support developing seed grains and increase crop yields, including those of rice (Oryza sativa). In this regard, little is known about the function of vacuolar invertase (VIN) in controlling sink strength and thereby seed size. Here, in rice we analyzed mutants of two VINs, OsVIN1 and OsVIN2, to examine their role during seed development. In a phenotypic analysis of the T-DNA insertion mutants, only the OsVIN2 mutant osvin2-1 exhibited reduced seed size and grain weight. Scanning electron microscopy analysis revealed that the small seed grains of osvin2-1 can be attributed to a reduction in spikelet size. A significant decrease in VIN activity and hexose level in the osvin2-1 spikelets interfered with spikelet growth. In addition, significant reduction in starch and increase in sucrose, which are characteristic features of reduced turnover and flux of sucrose due to impaired sink strength, were evident in the pre-storage stage of osvin2-1 developing grains. In situ hybridization analysis found that expression of OsVIN2 was predominant in the endocarp of developing grains. A genetically complemented line with a native genomic clone of OsVIN2 rescued reduced VIN activity and seed size. Two additional mutants, osvin2-2 and osvin2-3 generated by the CRISPR/Cas9 method, exhibited phenotypes similar to those of osvin2-1 in spikelet and seed size, VIN activity, and sugar metabolites. These results clearly demonstrate an important role of OsVIN2 as sink strength modulator that is critical for the maintenance of sucrose flux into developing seed grains.

Analysis on the free surface flow induced by a pair of source-sink in Stokes flow (스톡스 유동장 내의 한 쌍의 소오스-싱크에 의한 자유표면 유동해석)

  • Jeong, Jae-Tack;Park, Jong-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.304-307
    • /
    • 2008
  • Two-dimensional Stokes flow due to the line source and line sink of same strength in semi-infinite flow region with free surface is analysed using complex variable theory and conformal mapping. Surface tension effects are included while gravity is neglected. From the results of analysis, flow pattern and free surface shape are obtained and velocity distribution on the free surface is determined with 2 independent parameters Ca (capillary number) and h (non-dimensionalized distance between source and sink). When the location of the sink is above the source, velocity on the free surface converges and a cusp occurs on the free surface for the value of Ca above some critical capillary number.

  • PDF

Optimal fin planting of splayed multiple cross-sectional pin fin heat sinks using a strength pareto evolutionary algorithm 2

  • Ramphueiphad, Sanchai;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • This research aims to demonstrate the optimal geometrical design of splayed multiple cross-sectional pin fin heat sinks (SMCSPFHS), which are a type of side-inlet-side-outlet heat sink (SISOHS). The optimiser strength Pareto evolutionary algorithm2 (SPEA2)is employed to explore a set of Pareto optimalsolutions. Objective functions are the fan pumping power and junction temperature. Function evaluations can be accomplished using computational fluid dynamics(CFD) analysis. Design variablesinclude pin cross-sectional areas, the number of fins, fin pitch, thickness of heatsink base, inlet air speed, fin heights, and fin orientations with respect to the base. Design constraints are defined in such a way as to make a heat sink usable and easy to manufacture. The optimum results obtained from SPEA2 are compared with the straight pin fin design results obtained from hybrid population-based incremental learning and differential evolution (PBIL-DE), SPEA2, and an unrestricted population size evolutionary multiobjective optimisation algorithm (UPSEMOA). The results indicate that the splayed pin-fin design using SPEA2 issuperiorto those reported in the literature.

Injection molding analysis for LED outdoor lighting top cover of one heat sink body type structure (방열체 일체형 구조의 LED 아웃도어 등기구 상부커버에 관한 사출성형해석)

  • Lee, Kwan-Young
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.42-48
    • /
    • 2020
  • This study is on the injection molding analysis for the LED outdoor lighting top cover of one heat sink body type structure. Thermoplastic and thermosetting resins were applied to compare the thermal properties during the injection molding process. The thermoplastic resin is used in this study due to special characteristics that it is light, good strength and dose long not transmute quality even if pass long time. The thermosetting resin is applied to this study due to good in strength, lightweight and excellent etc, thermal conductivity. This study presented a preliminary analysis of fill time, weld line, air trap etc. for the injection molding process of LED lamp cover and body through simulation using Moldflow. As a result of the study, it was selected HTM-102 material because the thermosetting resin has excellent strength and heat conductivity.

Use of Single-leaf Cutting in the Study of the Expression of Starch Synthesis and Modification Genes in Sweetpotato

  • Kim Sun-Hyung;Hamada Tatsuro;Otani Matoyasu;Koga Hironori;Shimada Takiko
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.123-127
    • /
    • 2005
  • The evaluation of source potential and sink strength is the generally large and laborious sample size required to adequately assess anyone of the parameters in field-grown sweetpotato. For this purpose we used the rooted single-leaf cuttings with petioles, because the source and sink organs are restricted in this system. The rooted single-leaf cutting of sweetpotato provides a unique source-sink model system, and is established within about 50 days after planting. In this study, the sink potential of sweetpotato tubers was examined based on the expression of genes for starch synthesis (AGPase) and modification (SBEII and GBSSI) in single rooted leaf plant. The gene expression patterns of GBSSI, SBEII and AGPase at various developmental stages and in different types of root tissues presented. These results suggest that the rooted single-rooted method can be used an ideal model system to study physiological and biochemical mechanisms in sweetpotato.

Fair Queuing for Mobile Sink (FQMS) : Scheduling Scheme for Fair Data Collection in Wireless Sensor Networks with Mobile Sink (모바일 싱크를 위한 균등 큐잉(FQMS) : 모바일 싱크 기반 무선 센서 네트워크에서 균등한 데이터 수집을 위한 스케줄링 기법)

  • Jo, Young-Tae;Park, Chong-Myung;Lee, Joa-Hyoung;Seo, Dong-Mahn;Lim, Dong-Sun;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.204-216
    • /
    • 2010
  • Since Sensor nodes around a fixed sink have huge concentrated network traffic, the battery consumption of them is increased extremely. Therefore the lifetime of sensor networks is limited because of huge battery consumption. To address this problem, a mobile sink has been studied for load distribution among sensor nodes. Since a mobile sink changes its location in sensor networks continuously, the mobile sink has time limits to communicate with each sensor node and unstable signal strength from each sensor node. Therefore, a fair and stable data collection method between a mobile sink and sensor nodes is necessary in this environment. When some sensor nodes are not able to send data to the mobile sink, a real-time application in sensor networks cannot be provided. In this paper, the new scheduling method, FQMS (Fair Queuing for Mobile Sink), is proposed for fair and stable data collection for mobile sinks in sensor networks. The FQMS guarantees balanced data collecting between sensor nodes for a mobile sink. In out experiments, the FQMS receives more packets from sensor nodes than legacy scheduling methods and provides fair data collection, because moving speed of a mobile sink, distance between a mobile sink and sensor nodes and the number of sensor nodes are considered.

A Study on the Injection Molding Process for Manufacturing of Alternator Pulley (얼터네이터 풀리의 제조를 위한 사출성형공정에 관한 연구)

  • 민병현;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • So far, an alternator pulley has been formed by cold forging and casting with a metal due to the necessity of its high strength. Various advantages such as the light weight, the low cost, and the high productivity can be obtained by the injection molding process using engineering plastics. Engineering plastics have an excellent performance in the characteristics off strength vs. weight, a good forming ability and a productivity. The object of this study is to develop an alternator pulley, which has been made with a metal, using the injection molding process based on Taguchi methods. A sink mark is considered as a characteristic parameter to improve the quality. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.

Comparison of Yield and Growth Characteristics of Korean High Yielding Cultivars and IRRI's New Plant Type Rice Line

  • Lee, Byun-Woo;Ha, Jong-Ryuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.59-63
    • /
    • 1999
  • Yield and growth characteristics were compared for five rice cultivars; a new Tongil-type, so called "super-rice", Dasanbyeo, an old Tongil-type Milyang 23, two japonicas Dongjinbyeo and Ilpumbyeo, and a new plant type (NPT)line IR65600-27-1-2. The objective of this stusy was to clarify the high yielding capacity of Dasanbyeo in terms of growth characteristics. The average grain yield (9 t/ha) of Dasanbyeo was higher than that of Milyang 23 by ca. 9% that of japonicas by 20 to 30%, and that of NPT line by ca. 100%. The higher grain yield of Dasanbyeo was attributable not only to the greater dry matter production but also to the higher harvest index (HI). Dasanbyeo showed the greatest dry matter at harvest owing not only to the rapid leaf expan-sion at early growth stage and the resulting high LAI through the entire growth stage but also to the high NAR despite the high LAI. The rapid leaf expansion of Dasanbyeo at early growth stage seemed to be related in part to the profuse tillering capacity. HI was 0.53 in Dasanbyeo, 0,51 in Milyang 23, 0.41 in japonicas, and 0.35 in NPT line. Dasanbyeo was indebted for its higher HI to the relatively high grain filling ratio in spite of a much greater sink size than the other cultivars. Dasan had a greater source to sink ratio during grain ripening as measured by LAD/spikelet and dry matter production/spikelet which showed positove correlations with the grain ripening ratio. New plant type (NPT) line showed the lowest grain yield owing to the small sink size and the low grain filling ratio which seemed to have resulted from the abundant occurrence of weak-strength spikelets. The weak sink strength, in turn, seemed to have suppressed photosynthesis during the grain ripening stage.

  • PDF

Deformation Behaviors of Materials during Nanoindentation Test and Simulation by Three-Dimensional Finite Element Analysis (재료의 나노인덴테이션 변형 거동과 3차원 유한요소해석)

  • Kim Ji-soo;Yang Hyeon-yun;Yun Jon-do;Cho Sang-bong
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.436-442
    • /
    • 2004
  • Elastic and plastic deformation behaviors of the high purity aluminum and the silica glass were studied using nanoindentation and finite element analysis(FEA) techniques. Berkovich- and cone-type indenters were used for the nanoindentation test. Deformation behaviors and nanoindent profiles of elastic, elastic-plastic or plastic materials were clearly visualized by FEA simulation. Effects of the penetration depth and strain hardening on the deformation behavior were examined. Pile-up and sink-in behaviors were studied by using FEA technique. Degree of pile-up or sink-in was found to be a function of the ratio of elastic modulus to yield strength of materials. FEA was found to be an effective method to study deformation behaviors of materials under nanoindentation, especially in the case when pile-up or sink-in phenomena occurred.

Study for grain-filling of rice using 13C labeling flow-metabolome analysis

  • Okamura, Masaki;Hirai, Masami Yokota;Sawada, Yuji;Okamoto, Mami;Arai-Sanoh, Yumiko;Yoshida, Hiroe;Mukouyama, Takehiro;Adachi, Shunsuke;Fushimi, Erina;Yabe, Shiori;Nakagawa, Hiroshi;Kobayashi, Nobuya;Kondo, Motohiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.59-59
    • /
    • 2017
  • Rice (Oryza sativa L.) is the most important crop and its yield must be improved to feed the increasing global population. Recently developed high-yielding varieties with extra-large sink capacity often have a problem in unstable grain-filling. Therefore, understanding limiting factors for improving grain-filling and controlling them are essential for further improvement of rice grain yield. However, since grain-filling rate was determined by complex sink-source balance, the ability of grain-filling was very difficult to evaluate. Source ability for 'grain' was not only determined by the ability of carbon assimilation in leaves, but also that of carbon translocation from leaves to panicles. Sink strength was determined by the complex carbon metabolism from sucrose degradation to starch synthesis. Hence, to evaluate the grain-filling ability and determine its regulatory steps, the whole picture of carbon flow from photosynthesis at leaves to starch synthesis at grains must be revealed in a metabolite level. In this study, the yield and grain growth rate of three high-yielding varieties, which show high sink capacity commonly, were compared. Momiroman showed lower grain filling rate and slower grain growth rate than the other varieties, Hokuriku 193 and Tequing. To clarify the limiting point in the carbon flow of Momiroman, $CO_2$ labeled by stable isotope ($^{13}C$) was fed to three varieties during ripening period. The ratio of $^{13}C$ left in the stem was higher in Momiroman 24 hours after feeding, suggesting inefficient carbon translocation of Momiroman. More interestingly, $^{13}C$ translocation from soluble fraction to insoluble one in the grain seemed to be slower in Momiroman. To get the further insight in a metabolite level, we are now trying the $^{13}C$ labeling metabolome analysis in the developing grains.

  • PDF