• Title/Summary/Keyword: sink node

Search Result 326, Processing Time 0.034 seconds

A Novel Bio-inspired Trusted Routing Protocol for Mobile Wireless Sensor Networks

  • Zhang, Mingchuan;Xu, Changqiao;Guan, Jianfeng;Zheng, Ruijuan;Wu, Qingtao;Zhang, Hongke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.74-90
    • /
    • 2014
  • Routing in mobile wireless sensor networks (MWSNs) is an extremely challenging issue due to the features of MWSNs. In this paper, we present a novel bio-inspired trusted routing protocol (B-iTRP) based on artificial immune system (AIS), ant colony optimization (ACO) and Physarum optimization (PO). For trust mechanism, B-iTRP monitors neighbors' behavior in real time and then assesses neighbors' trusts based on AIS. For routing strategy, each node proactively finds routes to the Sink based on ACO. When a backward ant is on the way to return source, it senses the energy residual and trust value of each node on the discovered route, and calculates the link trust and link energy of the route. Moreover, B-iTRP also assesses the availability of route based on PO to maintain the route table. Simulation results show how B-iTRP can achieve the effective performance compared to existing state-of-the-art algorithms.

Network Traffic Reduction Method using Compression in Wireless Sensor Networks (무선 센서 네트워크에서 압축을 이용한 네트워크 트래픽 감소 기법)

  • Gim, Dong-Gug;Lee, Joa-Hyoung;Park, Chong-Myung;Kwon, Young-Wan;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1511-1518
    • /
    • 2008
  • Wireless sensor network is a network that consists of small wireless sensor nodes. Sensor nodes transfer the sensed data about the objects or environment to the sink through wireless channel. The energy dissipation by wireless transmission is the primary factor of energy dissipation in the sensor node. To utilize the limitted resource at the sensor node, it is required to reduce the number of wireless transmission. In the paper, we proposes a new energy efficient method, NRMC, to reduce the energy dissipation by using the compression technique - DPCM, Wavlet, Quantization, RLC. With NTRC, the life time of sensor network could be increased.

Ranking Artificial Bee Colony for Design of Wireless Sensor Network (랭킹인공벌군집을 적용한 무선센서네트워크 설계)

  • Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.87-94
    • /
    • 2019
  • A wireless sensor network is emerging technology and intelligent wireless communication paradigm that is dynamically aware of its surrounding environment. It is also able to respond to it in order to achieve reliable and efficient communication. The dynamical cognition capability and environmental adaptability rely on organizing dynamical networks effectively. However, optimally clustering the cognitive wireless sensor networks is an NP-complete problem. The objective of this paper is to develop an optimal sensor network design for maximizing the performance. This proposed Ranking Artificial Bee Colony (RABC) is developed based on Artificial Bee Colony (ABC) with ranking strategy. The ranking strategy can make the much better solutions by combining the best solutions so far and add these solutions in the solution population when applying ABC. RABC is designed to adapt to topological changes to any network graph in a time. We can minimize the total energy dissipation of sensors to prolong the lifetime of a network to balance the energy consumption of all nodes with robust optimal solution. Simulation results show that the performance of our proposed RABC is better than those of previous methods (LEACH, LEACH-C, and etc.) in wireless sensor networks. Our proposed method is the best for the 100 node-network example when the Sink node is centrally located.

Energy Efficient Routing Protocol Based on PEGASIS in WSN Environment (WSN 환경에서 PEGASIS 기반 에너지 효율적 라우팅 프로토콜)

  • Byoung-Choul Baek;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.579-586
    • /
    • 2023
  • A wireless sensor network (WSN) has limited battery power because it is used wirelessly using low-cost small sensors. Since the battery cannot be replaced, the lifespan of the sensor node is directly related to the lifespan of the battery, so power must be used efficiently to maximize the lifespan of the network. In this study, based on PEGASIS, a representative energy-efficient routing protocol, we propose a protocol that classifies layers according to the distance from the sink node and configures multiple chains rather than one chain. The proposed protocol can increase network lifespan by reducing the transmission distance between nodes to prevent unnecessary energy consumption.

Characteristics of Panicle Traits for 178 Rice Varieties Bred in Korea (국내에서 육성된 벼 품종들의 이삭형질 특성)

  • Park, Hyun-Su;Kim, Ki-Young;Mo, Young-Jun;Choung, Jin-Il;Kang, Hyun-Jung;Kim, Bo-Kyung;Shin, Mun-Sik;Ko, Jae-Kwon;Kim, Sun-Hyung;Lee, Bu-Young
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.169-180
    • /
    • 2010
  • This study was conducted to investigate characteristics of panicle traits which are important factors affecting yield and grain quality of rice. Twelve panicle traits in 178 Korean rice varieties composed of 160 Japonica type varieties and 18 Tongil type varieties were investigated. Tongil type varieties had longer panicle and thicker neck node than Japonica type varieties. Other traits such as number of total spikelets, total rachis-branches, secondary rachis-branches (SRBs) per panicle, total spikelets on SRBs per panicle, mean number of spikelets on a SRB, and mean number of SRBs per primary rachis branch (PRB) in Tongil type varieties were also higher than in Japonica type varieties. On the other hand, Japonica type varieties were shown to have well exserted panicle and little more mean number of spikelets on a PRB than Tongil type varieties. According to cluster analysis based on 12 panicle traits, 178 varieties were divided into four main groups. Group I had 133 Japonica type varieties and was characterized by relatively well exserted short panicle, small thickness of neck node, few rachis-branches and little sink size than other group. Group II was composed of 24 Japonica type varieties and 6 Tongil type varieties showing medium value and range between Group I and III. Group III included 11 Tongil type varieties and 1 Japonica type variety 'Baegjinju1' characterized by relatively poor exserted long panicle, big thickness of neck node, many rachis-branches and large sink size. Group IV was solely composed of 'Nongan', which had well exserted long panicle, big thickness of neck node, many rachis-branches and large-sink size. In correlation analysis, number of total spikelets per panicle showed very high correlation with the number of total rachis-branches per panicle (r=0.975), number of spikelets on SRBs per panicle (0.962), number of SRBs per panicle (0.959), mean number of SRBs per PRB (0.746) and mean number of spikelets on SRBs (0.738).

Bayes Stopping Rule for MAC Scheme Wireless Sensor Networks (무선 센서 망에서 MAC 방식을 위한 Bayes 중지 규칙)

  • Park, Jin-Kyung;Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.53-61
    • /
    • 2008
  • Consider a typical wireless sensor network in which stem nodes form the backbone network of mesh topology while each stem node together with leaf nodes in its vicinity forms a subnetwork of star topology. In such a wireless sensor network, we must heed the following when we design a MAC scheme supporting the packet delivery from a leaf node to a stem node. First, leaf nodes are usually battery-powered and it is difficult to change or recharge their batteries. Secondly, a wireless sensor network is often deployed to collect and update data periodically. Late delivery of a data segment by a sensor node causes the sink node to defer data processing and the data segment itself to be obsolete. Thirdly, extensive signaling is extremely limited and complex computation is hardly supported. Taking account of these facts, a MAC scheme must be able to save energy and support timeliness in packet delivery while being simple and robust as well. In this paper, we propose a version of ALOHA as a MAC scheme for a wireless sensor network. While conserving the simplicity and robustness of the original version of ALOHA, the proposed version of ALOHA possesses a distinctive feature that a sensor node decides between stop and continuation prior to each delivery attempt for a packet. Such a decision needs a stopping rule and we suggest a Bayes stopping rule. Note that a Bayes stopping rule minimizes the Bayes risk which reflects the energy, timeliness and throughput losses. Also, a Bayes stopping rule is practical since a sensor node makes a decision only using its own history of delivery attempt results and the prior information about the failure in delivery attempt. Numerical examples confirm that the proposed version of ALOHA employing a Bayes stopping rule is a useful MAC scheme in the severe environment of wireless sensor network.

A Routing-Tree Construction Algorithm for Energy Efficiency in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성을 고려한 라우팅 트리 구축 알고리즘)

  • Kim, Yul-Sang;Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.731-736
    • /
    • 2009
  • In wireless sensor network, many sensor nodes are distributed in the field. They communicate the sensing data each other and forward it to sink. Routing protocols, which define the delivery methods of sending data, affect to the lifetime of sensor network. This paper proposes RTAF that is a routing-tree construction algorithm of sensor nodes by a single flooding process in wireless sensor network. A routing tree is constructed by selecting a parent node using the forward-direction flooding packet and gathering children nodes using the reverse-direction flooding packet. In this process, a node with much energy becomes the parent node. And the routing tree is periodically reconstructed in order to distribute the loads of parent nodes. The proposed algorithm compared performance with Modified-LEACH using NS2 network simulation tool. The simulation result shows that the proposed algorithm constructs a routing-tree faster and reduced 40-80% in routing-tree construction packet.

Efficient Flooding in Ad hoc Networks using Cluster Formation based on Link Density (애드 혹 네트워크에서 링크밀도기반 클러스터 구축을 이용한 효율적인 플러딩)

  • Lee, Jae-Hyun;Kwon, Kyung-Hee
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.589-596
    • /
    • 2007
  • Although flooding has the disadvantages like a transmission of duplicated packets and a packet collision, it has been used frequently to find a path between a source and a sink node in a wireless ad hoc network. Clustering is one of the techniques that have been proposed to overcome those disadvantages. In this paper, we propose a new flooding mechanism in ad hoc networks using cluster formation based on the link density which means the number of neighbors within a node's radio reach. To reduce traffic overhead in the cluster is to make the number of non-flooding nodes as large as possible. Therefore, a node with the most links in a cluster will be elected as cluster header. This method will reduce the network traffic overhead with a reliable network performance. Simulation results using NS2 show that cluster formation based on the link density can reduce redundant flooding without loss of network performance.

A Rendezvous Point Replacement Scheme for Efficient Drone-based Data Collection in Construction Sites (공사현장에서 효율적인 드론 기반 데이터 수집을 위한 랑데부 포인트 교체 기법)

  • Kim, Taesik;Jung, Jinman;Min, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • Rendezvous point is used to gather the data from sensor nodes and send to sink node efficiently in selected area. It incurs a unbalanced energy consumption nearby the rendezvous point which can shorten the network life time shortly. Thus, it is very important to select the rendezvous point effectively among all sensors in order to not drain the battery of a sensor node in construction sites. In this paper, we propose a rendezvous point replacement mechanism which considers remaining energy of nodes to prolong the network lifetime. Also, for shortening the distance of drone at the same time, it increases the probability of the near-by drone node becoming rendezvous point. The simulation results show that the proposed scheme can significantly improve the network lifetime and the flight distance compared with the existing LEACH, L-LEACH algorithm.

Effects of directional transmission on clustering WSN (클러스터링 센서네트워크의 방향성 전송 효과)

  • Kim, Jeong-Mi;Zhang, Zhe-Hao;Kim, Chong-Gun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.258-268
    • /
    • 2012
  • Wireless Sensor Network(WSN) is constituted by low-cost and low-energy, So the most important issue is that the task of the sensor performs successfully by using less energy. In previous WSN, determination of the header and gathering sensor data solution by header give great affection to the performance of network. In this paper, we propose a Hybrid transmission method which considers the direction of data collections. In the proposed hybrid routing method, all of the sensors determine that transmission the data to the sink node directly or indirectly using the head node depend on the location of the head node in the cluster. The performance is compared with the LEACH(Low Energy Adaptive Clustering Hierarchy) by experimental analysis. The results show that the preposed method can reduce the communication distance and energy consumption by avoiding the detour direction of transmission of the data.