• Title/Summary/Keyword: singularity

Search Result 641, Processing Time 0.022 seconds

A Study on the Design Methods Utilizing 'Congestion' and 'Void' from Rem Koolhaas's Architecture (렘 콜하스의 건축에서 나타나는 밀집과 보이드를 적용한 디자인 방법에 관한 연구)

  • Park, Sola
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Rem Koolhaas has pursued new architectural approaches breaking with conventional ones. Around the 1990s when large-scale projects occurred with the union of Europe ahead, Koolhaas recognized the limits to the existing methods for responding to such changes. Accordingly, he came to use design methods based on 'congestion' and 'void' as strategical alternatives, which became the moment for him to leap forward from the previous working sphere based in Europe to becoming an architect who would be commissioned a number of large-scale global projects. Therefore, this study intends to investigate his design methods which utilized congestion and void, and to derive spatial characteristics from the projects based on such methods. First of all, the study looked into the historical background, definition and process of congestion and the void as design methods, and analyzed his projects to which such methods were applied by classifying them into the following categories: 1) the void that removes a space of singularity; 2) the void that penetrates space while making a flow; and 3) the void that is formed by vertical extrusion. Then, the characteristics of architectural spaces made in this way were identified as 1)the single-body appearance made by congestion and the following types of space made by the void: 2) the non-uniformly shaped space that looks like floating; 3) the flexible space with various flows and directions; and 4) the space with virtual possibilities that embrace contingent events. This understanding of Rem Koolhaas's design methods which were attempted in various ways at his critical turning point will be the foundation to understand the overall world of his works.

Comparative Analysis of Container for High Performance Computing

  • Lee, Jaeryun;Chae, Yunchang;Tak, Byungchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.11-20
    • /
    • 2020
  • In this paper, we propose the possibility of using containers in the HPC ecosystem and the criteria for selecting a proper PMI library. Although demand for container has been growing rapidly in the HPC ecosystem, Docker container which is the most widely used has a potential security problem and is not suitable for the HPC. Therefore, several HPC containers have appeared to solve this problem and the chance of performance differences also emerged. For this reason, we measured the performance difference between each HPC container and Docker container through NAS Parallel Benchmark experiment and checked the effect of the type of PMI library. As a result, the HPC container and the Docker container showed almost the same performance as native, or in some cases, rather better performance was observed. In the result of comparison between PMI libraries showed that PMIx was not superior to PMI-2 in all conditions.

The Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Yang, Jae-Guen;Joo, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate, hollow cylinder and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

A Decorrelation Technique for Direction-of-Arrival Estimation of Coherent Signals (Coherent 신호의 입사방향 추정을 위한 상관관계 제거 기법)

  • Park, Geun-Ho;Shin, Jong-Woo;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.95-104
    • /
    • 2016
  • Subspace-based direction-of-arrival (DOA) estimation algorithms have a difficulty in dealing with coherent signals caused by multi-path environment. As one of attempts to solve this problem, a spatial differencing method is known to be useful for not only estimating DOAs of the coherent signals but also improving the number of resolvable wavefronts even more than the number of antenna elements. However, since the conventional spatial differencing method uses only the partial statistics of the observed data, this method suffers from the performance degradation in estimation accuracy caused by the residual correlation between the uncorrelated signals. To cope with this problem, in this paper, a generalized spatial differencing method is proposed. Unlike the conventional method, the proposed method utilizes the entire statistics of the received signals. Therefore, the additional performance enhancement in both estimation accuracy and the number of resolvable wavefronts can be achieved. The performance analyses with computer simulations show that the proposed method outperforms the conventional method in terms of the estimation accuracy and the number of resolvable wavefronts.

Nonlinear Flow Characteristics of Two-Dimensional Hydrofoils moving below the Free surface (자유수면하에서 이동하는 2차원 수중익 주위의 비선형 유동특성)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.8-19
    • /
    • 1998
  • Nonlinear flow characteristics of a hydrofoil running under the free surface are investigated based on potential flow theory using singularity distribution techniques. Following Hess & Smith's method[12], sources and vortices are distributed on the surface of the foil and Rankine sources are distributed at a distance above the undisturbed free surface to solve the nonlinear free surface waves(so called Raised Panel Method). Using the linearized Neumann-Kelvin solution, the conversed solutions which rigidly satisfy the nonlinear free surface condition is obtained through an iterative technique. It is validated that the nonlinear solutions are compared with Duncan's experimental results(NACA 0012, $\alpha=5^{\circ}$), showing good correlations with each other. At a very shallow submergence and a very high speed the converged solutions are obtained. As the speed increases higher, it is shown that the difference between the nonlinear and linear solutions are trivial. Finally, the effects of the camber and thickness on the nonlinear flow characteristics of the foil are investigated.

  • PDF

A Study on the Calculation of Stress Intensity Fantors considering Pressure of Crack-Face (균열면의 압력을 고려한 응력확대계수의 결정에 관한 연구)

  • 진치섭;최현태;이홍주
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.175-186
    • /
    • 1995
  • The determination of the stress intensity factors is investigated by sur-face integral method around the crack tip of the nlass~vc: concrete structure. The surface integral met hod is naturally derived from the standal-ci path integral J. Howevcr. In the J integral method, pressure in the crack-face and body forces can not be considered, while this theory has advantage of ccmsidering many kind of forces, so t.his theory will be useful in investigating more accurate strt:ss states around crack tip. Furthermore. t h~s rrlethod can elerninate unntussary process of using singular elements and fine mesh around crack tip which is used 11; modelling the singularity around crack tip. A computer program for determming $K_I$, $K_{II}$ is tfcvulopcd by applying this theory. $K_I$, $K_{II}$ values usmg X noded isoparametric elements which was proved and variation of the stress intensity factor was investigated by application of darn structures.

Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy

  • Kim, Ki-Kang;Kim, Soo-Min;Cui, Yan;Jeong, Mun-Seok;Han, Jong-Hun;Choi, Young-Chul;An, Kay-Hyeok;Oh, Kyung-Hui;Lee, Young-Hee
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • We measured the degree of macrodispersion of the various single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) using UV-VIS-NIR absorption spectroscopy. CNTs were dispersed with SDS of 2 wt % in deionized water using the homogenizer and then were further centrifugated at 6000 g for 10 min. The degree of macrodispersion, expressed by $D_m({\lambda})=A_a({\lambda})/A_b({\lambda})^*100$ (%), where ${\lambda}$ is the wavelength and $A_a({\lambda})$ and $A_b({\lambda})$ are the absorbance of the sample after and before centrifugation, respectively. In the case of MWCNTs, we evaluated the degree of macrodispersion by the average degree of macrodispersion ($D_m({\lambda})$) between 1000 and 1200 nm. The degree of macrodispersion of SWCNTs was evaluated at the wavelength in which van Hove singularity-related transition regions were excluded, i.e., the range was chosen between ${E_{11}}^S$ and ${E_{22}}^S$ peaks. We have estimated six samples with the same method. The standard deviation of each sample was lower than 5. Therefore, we presented a reliable evaluation method for the macrodispersion of CNTs for standardization.

Constitutive Model for Hardening Materials such as Rock or Concrete (암석이나 콘크리트와 같은 경화재료에 대한 구성모델)

  • Kang, Byung Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.161-171
    • /
    • 1993
  • The aim of this study is to provide the stress-strain behavior of hardening geological materials such as rock or concrete on three dimensional spaces by using Desai model based on plastic theory. To validate proposed model, truly triaxial tests with high pressure under variety of stress paths in which three principal stresses were controlled independently using concrete materials were performed. The main results are summerized as follows: 1. Various stress paths for hardening materials used are satisfactorily explained by performing the truly triaxial test with high pressure. This is very important to investigate constitutive equations for materials like rock or concrete. 2. Since the proposed yield function is continuous, it avoids the singularity point at the intersection of two function in the previous models, thus, reducing the difficulties for computer implementation. 3. Analytic predictions for yielding behavior on $J_1-{\sqrt{J_{2D}}}$ octahedral and triaxial plane, as well as volumetric strain and stress-strain behavior agree well with experimental results.

  • PDF

A Study on the Determination and Characteristics of Stress Intensity Factors and Stress Singularities for V-notched Cracks in Dissimilar Materials (이종재료간 V-노치균열의 응력특이성과 응력강도계수의 특성 및 결정에 관한 연구)

  • 조상봉;윤성관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1890-1899
    • /
    • 1992
  • In bonded structures, there are V-notched cracks in dissimilar materials and the stress concentration of these V-notched cracks causes to occur interface cracks in dissimilar materials Therefore the strength evaluation of V-notched cracks in dissimliar materials seems to be important. The stress fields of a V-notched cracks is known as .sigma.$_{ij}$ .var. K $r_{p-1}$,where K is the stress intensity factor and p-1 is the stress singularity. When the distance, r, approaches to 0 at the stress fields of V-notched cracks, the stresses become infinites by two more stress singularities of p-1 and p-1 is no more -0.5. Stress singularities and stress intensity factors for V-notched cracks in dissimilar materials are treated and discussed. The Newton-Raphson method which is an efficient numerical method for solving a non-linear equation is used for solving stress sigularities. And stress intensity factors are solved by the collocation method using the Newton-Raphson and least squares method. The effects of stress intensity factors and stress singularities on stress fields of V-notched cracks in dissimilar materials are studied by using photoelasic isochromatic frings patterns obtained from computer graphics.s.

Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 균열의 탄소성 J 적분 해석)

  • Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook.