• 제목/요약/키워드: singular thermal stress

검색결과 18건 처리시간 0.024초

Relaxation of Singular Stress in Adhesively Bonded Joint at High Temperature

  • Lee, Sang Soon
    • 반도체디스플레이기술학회지
    • /
    • 제17권1호
    • /
    • pp.35-39
    • /
    • 2018
  • This paper deals with the relaxation of singular stresses developed in an epoxy adhesive at high temperature. The interface stresses are analyzed using BEM. The adhesive employed in this study is an epoxy which can be cured at room temperature. The adhesive is assumed to be linearly viscoelastic. First, the distribution of the interface stresses developed in the adhesive layer under the uniform tensile stress has been calculated. The singular stress has been observed near the interface corner. Such singular stresses near the interface corner may cause epoxy layer separated from adherent. Second, the interfacial thermal stress has been investigated. The uniform temperature rise can relieve the stress level developed in the adhesive layer under the external loading, which can be viewed as an advantage of thermal loading. It is also obvious that temperature rise reduces the bonding strength of the adhesive layer. Experimental evaluation is required to assess a trade-off between the advantageous and deleterious effects of temperature.

세라믹/금속접합제의 응력특이장 해석 및 강도평가 (Singular Stress Field Analysis and Strength Evaluation in Ceramic/Metal Joints)

  • 박영철;한근조;허선철;강재욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.470-474
    • /
    • 1997
  • Since the ceramic/metal joints is joined at high temperature, the residual stress will develop during when cooled from bonding temperature due to remarkable difference of thermal expansion coefficient between creamic and metal. Moreover, the edge of jointed interface makes singular stress field in the ceramic/metal joints and this singular stress field much influences on the strength of joints. In this study, The influence of residual stress, mechanical load and repeat thermal sysle was estimated in the ceramic/metal joints. According to this influence, the change of singular stress field was analyed and then strength test, X-ray measurement are performed.

  • PDF

Boundary element analysis of singular thermal stresses in a unidirectional laminate

  • Lee, Sang Soon;Kim, Beom Shig
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.705-713
    • /
    • 1997
  • The residual thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate due to cooling from cure temperature down to room temperature were studied. The matrix material was assumed to be thermorheologically simple. The time-domain boundary element method was employed to investigate the nature of stresses on the interface. Numerical results show that very large stress gradients are present at the interface corner and this stress singularity might lead to local yielding or fiber-matrix debonding.

섬유가 보강된 단일방향 점탄성 복합재료에 발생하는 특이 잔류 열응력의 경계요소해석 (Boundary Element Analysis of Singular Residual Thermal Stresses in A Fiber-Reinforced Unifirectional Viscoelastic Laminate)

  • 이상순;박준수
    • 전산구조공학
    • /
    • 제9권4호
    • /
    • pp.181-187
    • /
    • 1996
  • 이 논문에서는, 탄성 섬유와 점탄성 기지로 구성된 2차원의 단일방향 복합재료가 높은 제작온도로 부터 실온으로 냉각될때 섬유와 기지사이의 계면에서 발생하는 특이 열응력을 조사하고 있다. 계면을 따라 발생하는 잔류 열응력의 특성을 조사하는데 시간영역 경계요소법을 적용하였다. 수치해석 결과에 의하면, 계면응력들은 자유경계면 근처에 이르러 급속히 커지는데, 이러한 특이 잔류응력들은 자유경계면 가까이에서 국부 항복을 일으키거나 섬유와 기지의 결합분리를 야기시킬수 있다.

  • PDF

층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석 (Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow)

  • 최형집;오준성;이강용
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

Some Studies on Stress field in Dissimilar Materials

  • Katsuhiko Watanabe
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.631-635
    • /
    • 1996
  • Stress singularities appear at the interface edge in dissimilar materials also under thermal loading. First, these singularities then an interface meets a free side surface with an arbitrary angle are studied for a two-dimensional problem. The singular properties under thermal loading are made clear and the concrete singular field are obtained. Secondly, the dependence of stress field on elastic constants in axisymmetric dissimilar materials are. discussed. That is, it is shown that three elastic constants mutually independent are necessary, in general, to characterize the stress field of axisymmetric dissimilar materials, although Dunders' parameters defined for two-dimensional dissimilar materials have been often applied correspondingly also to axisymmetric problems.

  • PDF

세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포 (Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints)

  • 박영철;허선철;윤두표;김광영
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF

전위이론에 의한 열충격하의 균열거동에 관한 연구 (Study on the Behavior of a Center Crack under Thermal Impact by the Dislocation Theory)

  • 조종두;안수익
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3408-3414
    • /
    • 1996
  • This paper investigated plane strain stress intensity factors caused by thermal impact on a center-crack strip. The crack was aligned perpendicularly to the strip boundary. The problem was analysed by determining the dislocation density function in the singular integral equations formulated by the dislocation theory. Under the abrupt temperature change along the edge, the center crack behaved as a mode I crack due to the symmetric geometry. The value of maximum stress intensity factor monotonically increased until the ratio of dimensionless crack length approached to about 0.3, followed by gradual decrease. As a result, a critical corresponding crack length was determined.

온도변화로 인해 고분자 박막에 발생하는 열응력 해석 (Analysis of Thermal Stresses Induced in Polymeric Thin Layer Due to Temperature Change)

  • 이상순
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.146-152
    • /
    • 2002
  • In this study, the singular thermal stresses induced during cooling down from high temperature to room temperature have been analyzed for the viscoelastic thin layer. The time domain boundary element method has been employed to investigate the behavor of stresses for the whole interface. Within the context of a linear viscoelastic theory, a stress singularity exists at the point where the interface between the elastic substrate and the viscoelastic thin layer intersects the free surface.

  • PDF

비정상 열 하중을 받는 이질재료의 다중 크랙 문제 (Multi-Crack Problems for Non-homogeneous Material Subjected to Unsteady Thermal Load)

  • 김귀섭
    • 한국항공운항학회지
    • /
    • 제19권1호
    • /
    • pp.15-23
    • /
    • 2011
  • The purpose of this paper is to investigate the time behavior of a multiple crack problems. It is assumed that the medium contains cracks perpendicular to the crack surfaces, that the thermo-mechanical properties are continuous functions of the thickness coordinate. we use the laminated composite plate model to simulate the material non-homogeneity. By utilizing the Laplace transform and Fourier transform techniques, the multiple crack problems in the non-homogeneous medium is formulated. Singular integral equations are derived and solved to investigate the multiple crack problems. As a numerical illustration, transient thermal stress intensity factors(TSIFs) for a functionally graded material plate subjected to sudden heating on its boundary are provided. The variation in the TSIFs due to the change in material gradient and the crack position is studied.