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Some Studies on Stress Field in Dissimilar Materials

Katsuhiko Watanabe
Institute of Industrial Science, University of Tokyo

ABSTRACT

Stress singularities appear at the interface edge in dissimilar materials also under thermal loading. First, these singularities

when an interface meets a free side surface with an arbitrary angle are studied for a two-dimensional problem. The singular

p-operties under thermal loading are made clear and the concrete singular field are obtained. Secondly, the dependence of

stress field on elastic constants in axisymmetric dissimilar materials are discussed. That is, it is shown that three elastic

constants mutually independent are necessary, in general, to characterize the stress field of axisymmetric dissimilar materi-

a:s, although Dunders’ parameters defined for two-dimensional dissimilar materials have been often applied correspondingly

a:s0 to axisymmetric problems.
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1. Introduction

Recently, various kinds of bonded dissimilar materials
are used widely in many engineering fields, so the stress
evaluations of them have become important to let them
hive sufficient strengths. However, there still exist some
difficult problems to be solved in their stress analyses. For
example, stress singularity appears not only under me-
clianical loading but also under thermal loading at an in-
terface edge and interface crack tip, and the actual states
in the neighbourhood of an interface are not suitable to
tvio-dimensional analyses in many cases. Three-dimen-
siynal analyses are necessary and, moreover, plastic defor-
mation also should be taken into consideration.

In this paper, two problems are dealt with. The stress
siagularities at the free edge of the interface of a bonded
joint under thermal loading are studied first. It is impor-
taat to know them when the process of the production of
dissimilar materials is taken into account. Thermal stress
waen an interface meets a free side surface with an arbi-
trury angle is solved by replacing it with the stress from
trzction forces on the free boundary. The properties of the
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singularity are discussed and the general expression of
singular field about the problem are given.

On the other hand, the stress field in two-dimensional
dissimilar materials are characterized by two elastic con-
stants called Dunders’ parameters” and these Dunders’ pa-
rameters have been often applied correspondingly also to
axisymmetric dissimilar materials because of two-
dimensional- like properties of axisymmetric problems. It
is discussed secondly how many parameters mutually in-
dependent are necessary for an axisymmetric problem and
it is shown theoretically and numerically that three param-
eters mutually independent are geperally necessary in the
problem as for the general three-dimensional problem.

2. Thermal Stress Singularities

at an Interface Edge

2.1 Thermal Stress Model
interface meets a side surface with an arbitrary angle as is
shown in Fig.l. In this coofiguration, it can be easily
shown that the thermal stress problem caused due to a

Consider the case where an
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Fig.1 Thermal stress model

uniform temperature change AT can be replaced by the
problem under the tractions R, and R: on the free surface
given by

Ry = B e AT siny )

v;
14y

. plaue strain

1%

Bo= e i = {1+, v =
1

E; = Einl =anv” =1 plane srless

as shown in the figure, where Ei, o, v and w{=F/2(1+w))
denote Young's modulus, thermal expansion coefficient,
Poisson’s ratic and shear modulus, respectively. Subscript
i takes 1 and 2 and it means that the quantity is for mate-
rial i,

2.2 Singularity Analysis The Goursat formulas for ther-
mal stress problem are given, in a polar coordinate sys-
tem, by

@i + @i =4 Reld (2]
Tig =~ Tip + 21'7';,,;‘—”2(,'?“0 {Zrﬁ:(z) - w:(;)} (2)
23 [rie + fvia ~ !“E.'sf!m)zc*m {'4{75;(2) — zdilz) - ‘e”i(z)l
s={1+WadT, x=3-4v  : plane sirain
so=edl,  k=(3-w)/(1+v}
where o, Ow e and us, Ve are stress components and dis-

: plane stress

placement components in 2 polar coordinate system, re-
spectively. The conditions of coatinuity and boundary
conditions in the problem here are given by

(1&&;— + i"‘f)h’—n/?:("?' -+ i"’“’)ﬂz-p—ul‘l
{0 + i1y rﬂ)p:,’__'/.zf:(ﬂ"zﬂ + iT208) g ymn )2
(@16 = it1r0)gmn o=l (sin y — i c0S 7}

(720 = iT200)pg yp= P2 {siny = i oS 7)

3

Here, let the complex stress functions be expressed by

wilz)=_ [(bu.m:" + ’f'as‘mf-x) (log :}"‘}

ey
Pl n’»,":".. ,‘".:'i v:”'
il z) 'g:,;{(‘ b ity )(h);‘ ) J @
By substituting Eq.(4) into Eq.(2) and applying Eq.(3) to
the results, a system of equations can be obtained for the
coefficients of the complex stress functions in the follow-
ing matrix form.

(P] {dd, }=(0}
(] {doas b= {1}

[P} {la}= {0} (35)
where {di} (k=0,1,,n)is the column matrx of coeffi-
cients in stress functions, the matrix [P] is given by

siny A 1fe?r Q
A 1/siny g e
{14 m)siny v} g 0
1] = 0 {1 +na)fsiny 0 D
1 X PN
/A i o
Q 4] 6 0
L 4] QO 0 0
-} —-X -1 feti sin 2y
~A -1 sin 2y —a?y
(1~} —{a~@he ¥ = fe BT cosy
~{re - A AT {1l D) cosy (o= Gy
0 0 it 8
0 0 4 1]
1 A I 0
A i 4] H

6
and {g} (#=0,1,1-1) is defined by

{
(1t b= =ny o (PHd)

r—}

o’ !
{q,,_,}.—_-«-nC,:l-'F[f’}{rl,.} —-{n - K)C'r_(;{—i;:—{

(PHdumi}~ o~ (n =7+ 1)-{—;%—{!’]{13.‘«.-“ i

- -
(mh= (R (P} = Pl ] =
d
-7 o]

Here, & and B are the Dunders’ parameters and the

defined by
s+ 1) = sy + 1)

U g 1) gl + 1)
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=[l.|(K,2 — 1) = pp(ry = 1)
ey +1) + (e + 1) 8)
The matrix [ P] is the characteristic matrix for the problem
hare, so the solution of {4:} varies with [P] . The rank of
[°] depends on the values of Dunders’ parameters.

2.3 Result By observing the stress functions closely, the
logarithmic singularities can be stated when A=1. Thus, let
us deal with the case where a-B(l+cosecy) } Z0 and
A=1, first. In this case, the rank of [ P] becomes 6 and the
final solution for stress components can be obtained, when
n=1, as

7. =2(1 — asiny) (1 = cos 20) log r

ap=2(1 — asiny) (1 + cos 20) log r

Tra=2{cxsiny — 1)y sin 20 log r ©)
V/hen a{a-fKl+cosecy)} 2 0 and A=1, the rank of [P]
b:comes 8 and there exist no solutions for the homogene-
o 1s equation in Eq.(5). When a{a-f(1+cosecy)} > 0 and
A # 1 the rank of [P] becomes 7 and there exist solutions
for {d:}. By considering both homogeneous and
non-homogeneous equations in Eq.(5), it is seen that the
solutions of {d:} can be obtained for n=1 and n=0. How-
ever, according to the non-homogeneous equations, the
villue of A becomes 0 when n=0, so only the case of n=1
cin be considered for the evaluation of stress field and its
singularities. The value of A can be determined as the so-
lution of following equation.

AN L A+ C =0 (10)
where

Ay=a®f3 [ (1 = sin 2y + cos ) + At sin .'J7]
[rf(siny + cosy) + a’(sin 3y — cos 7]

By=a’ gt [3[}3(1 —sinyeosy) - Veeff (sin 29 - cos )
—Ge*(siny — cos 27)] [ (siny + cosy) + 2 sin y)
+3(siny — cos 27)]

C, =6a2g? {(siny — cos 29) (4 - A4 1Bsiny
+af(sin 27 + cos ) 4+ a’(sin 2y + cos 27)
+5(siny + cosy)] 4+ fr)

and the singular field is obtained as
7e=2[1 = afsiny + cos )] [%(1 = cos 20} logr
-+ [1 + a®(sin? ¥ = 2sin 2ycos ’y)] 301 sin 20t
79=2[1 — a(siny + cosy)] Iy(1 + cos20) log
+[1 = a?(sin? vy ~ 2sin 2ycos 7)) Fa(1 + cos 20)r?
Tra=2[n(siny + cosy) — 1] [y sin 20) logr
+[1- a®(sin? ¥ — 2cos 2y cos ] Fa(1 + cos 20)*

(11)
Here, F: and Fs in Eqs.(9) and (11) depend on Dunders’

pa-ameters, thermal expansion coefficient, temperature
chinge, specimen shape and boundary conditions.
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3. Dependence of Stress Field in Axisymmetric
Dissimilar Materials on Elastic Constants

3.1 Theoretical Consideration Consider the axisymmetric
dissimilar materials as shown in Fig.2 under an axisym-
metric loading. In an axisymmetric problem, the stress
components Oy, s, Ok and T that are not zero, in materi-
al i are generally given, by using Michell’s stress function

@, as

o, = (%( v —-a—d’-)
e oo 2
O = -éqz- ((2 -v)Vi% ~ Zi)
T = %((1—v.)v2¢, 322)

or? rér 922

and the displacement components w and w: in r and z di-
rections are given by

w = _1+V'az¢/
- E/ 0Ordz & 3
1+v, . 1 $
= - 2v,
W= {(1 W%, tEEt: Br}

(13)
On the other hand, these quantities should be satisfied
with the conditions of continuity on the interface ex-
pressed as
Ci: = Oz, Tiz = T
wm = W, W= ow (14)
Therefore, four equations between @ : and @ : are ob-
tained and, from these equations, the quantities related to
the stress in material 1 can be expressed, by the corre-

sponding quantities related to the stress in material 2, as

material 2
r (E:, Uz, Vz)

Fig.2 Axisymmetric dissimilar materials
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Fig.3 Axisymmetric dissimilar materials for analysis
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(15)
where I'=ge/w. In the equation above, the quantities relat-
ed to the stress in material 1 are connected with the quan-
tities related to the stress in material 2 through three elas-

Table 1 Combination of Materials

I w v
Standard (Si:Ny/S45C) | 0.6620 | 0.2700 | 0.3000
Combination A 0.6900 | 0.3580 0.3583
Combination B 0.6800 | 0.3275 0.3376
Combination C 0.6393 0.1938 0.2534

-634-

y
+ ¢ {‘& t
Material 1
E1, Vi
Materiat 1
E E1vy (p'll Kl)
(K, Kl)
y,
R x (Interface)
Y x (Interface) T .
R Material 2 Material 2
~ » E2,va } Ez, V2
o %l Ba, %)
J
¥ cyi ) J
RN
2w

Y

Fig4 Two-dimensional dissimilar materials for analysis

tic constants mutually independent and this means that
three parameters are necessary to characterize the stress
field in axisymmetric dissimilar materials.

3.2 Discussion based on Numerical Analyses Finite ele-
ment analyses were carried out in order to confirm the re-
sult above numerically. The model of axisymmetric dis-
similar materials shown in Fig.3 was analyzed under uni-
form tension. Two-dimeunsional model in Fig.4 was also
analyzed for comparison. As a standard, the combination
of Si:N: as the material 1 and S45C as the material 2 was
adopted. Their Young’s moduli and Poisson’s ratios are
304.0GPa, 206.0GPa, 0.27 and 0.30, respectively, and «
and B are 0.1832 and 0.0403, respectively, in this case.
Moreover, the material combinations as shown in Table 1
were supposed. In these combinations, the values of a and
B are the same as those of standard combination.

The distributions of the stress normalized by the stress
for the standard combipation are shown in Figs.5 and 6
with the distance from the interface edge. All the results
for two-dimensional model in Fig.5 coincide well each
other and this verifies the Dunders’ theory” that the stress
field in two-dimensional problem can be characterized by
Dunders’ parameters. However, the results for axi-
symmetric model in Fig.6 show that the stress distribution
depends on the material combination, and this is consid-
ered to correspond to the theoretical consideration in the
previous section.
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Fig.5 Stress distributions on the interface in two-dimensional model
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Fig.6 Stress distributions on the interface in axisymmetric model

4. Conclusion necessary to characterize the stress in the problem differ-
ent from in two-dimensional problem.
Two-dimensional thermal stress singularities at the in-
terface were studied and the concrete expression of stress Reference
field was derived. Moreover, the effect of elastic constants

or stress field in axisymmetric dissimilar materials was 1) Dunders, J., J. Appl. Mech., 36(1969), 650.
discussed and it was shown that three parameters are

-635-



