• Title/Summary/Keyword: singular integral

Search Result 168, Processing Time 0.021 seconds

A NOTE ON THE SOLUTION OF A NONLINEAR SINGULAR INTEGRAL EQUATION WITH A SHIFT IN GENERALIZED HOLDER SPACE

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • Using the center instead of the Lipschitz condition we show how to provide weaker sufficient convergence conditions of the modified Newton Kantorovich method for the solution of nonlinear singular integral equations with Curleman shift (NLSIES). Finer error bounds on the distances involved and a more precise information on the location of the solution are also obtained and under the same computational cost than in [1].

  • PDF

A NOTE ON THE SOLUTION OF A NONLINEAR SINGULAR INTEGRAL EQUATION WITH A SHIFT IN GENERALIZED $H{\ddot{O}}LDER$ SPACE

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.23 no.2
    • /
    • pp.257-260
    • /
    • 2007
  • Using the center instead of the Lipschitz condition we show how to provide weaker sufficient convergence conditions of the modified Newton Kantorovich method for the solution of nonlinear singular integral equations with Curleman shift (NLSIES). Finer error bounds on the distances involved and a more precise information on the location of the solution are also obtained and under the same computational cost than in [1].

  • PDF

WEIGHTED ESTIMATES FOR CERTAIN ROUGH OPERATORS WITH APPLICATIONS TO VECTOR VALUED INEQUALITIES

  • Liu, Feng;Xue, Qingying
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1035-1058
    • /
    • 2021
  • Under certain rather weak size conditions assumed on the kernels, some weighted norm inequalities for singular integral operators, related maximal operators, maximal truncated singular integral operators and Marcinkiewicz integral operators in nonisotropic setting will be shown. These weighted norm inequalities will enable us to obtain some vector valued inequalities for the above operators.

TRIGONOMETRIC GENERATED RATE OF CONVERGENCE OF SMOOTH PICARD SINGULAR INTEGRAL OPERATORS

  • GEORGE A. ANASTASSIOU
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.5_6
    • /
    • pp.407-414
    • /
    • 2023
  • In this article we continue the study of smooth Picard singular integral operators that started in [2], see there chapters 10-14. This time the foundation of our research is a trigonometric Taylor's formula. We establish the convergence of our operators to the unit operator with rates via Jackson type inequalities engaging the first modulus of continuity. Of interest here is a residual appearing term. Note that our operators are not positive. Our results are pointwise and uniform.

Receding contact problem of an orthotropic layer supported by rigid quarter planes

  • Huseyin Oguz;Ilkem Turhan Cetinkaya;Isa Comez
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.459-468
    • /
    • 2024
  • This study presents a frictionless receding contact problem for an orthotropic elastic layer. It is assumed that the layer is supported by two rigid quarter planes and the material of the layer is orthotropic. The layer of thickness h is indented by a rigid cylindrical punch of radius R. The problem is modeled by using the singular integral equation method with the help of the Fourier transform technique. Applying the boundary conditions of the problem the system of singular integral equations is obtained. In this system, the unknowns are the contact stresses and contact widths under the punch and between the layer and rigid quarter planes. The Gauss-Chebyshev integration method is applied to the obtained system of singular integral equations of Cauchy type. Five different orthotropic materials are considered during the analysis. Numerical results are presented to interpret the effect of the material property and the other parameters on the contact stress and the contact width.

FREDHOLM INTEGRAL EQUATION WITH SINGULAR KERNEL

  • M. A. Abdou;S. A. Hassan
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.223-236
    • /
    • 2000
  • In this paper, we solve the Fredholm integral equation of the first and second kind when the kernel takes a singular form. Also, some important relations for Chebyshev polynomial of integration are established.

Pseudo Mapping Method for Singular Integral of Curved Panels (곡면의 특이적분을 위한 가상 매핑 방법)

  • Lee, Ik-Jae;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • A numerical method is suggested for evaluating the singular integral of curved panels in the higher-order boundary element method. Two-step mapping procedures that are significantly related to the physical properties of singular behaviors were developed and illustrated. As a result, the singular behaviors were significantly alleviated, and the efficiency and robustness of the present method for tangentially and axially deformed elements were proven. However, inaccuracies and numerical instabilities of twisted elements were discovered as a result of nonlinearities.

EVALUATION OF SINGULAR INTEGRALS BY HYPERBOLIC TANGENT BASED TRANSFORMATIONS

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.133-146
    • /
    • 2011
  • We employ a hyperbolic tangent function to construct nonlinear transformations which are useful in numerical evaluation of weakly singular integrals and Cauchy principal value integrals. Results of numerical implementation based on the standard Gauss quadrature rule show that the present transformations are available for the singular integrals and, in some cases, give much better approximations compared with those of existing non-linear transformation methods.

Numerical solution of singular integral equation for multiple curved branch-cracks

  • Chen, Y.Z.;Lin, X.Y.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 2010
  • In this paper, numerical solution of the singular integral equation for the multiple curved branch-cracks is investigated. If some quadrature rule is used, one difficult point in the problem is to balance the number of unknowns and equations in the solution. This difficult point was overcome by taking the following steps: (a) to place a point dislocation at the intersecting point of branches, (b) to use the curve length method to covert the integral on the curve to an integral on the real axis, (c) to use the semi-open quadrature rule in the integration. After taking these steps, the number of the unknowns is equal to the number of the resulting algebraic equations. This is a particular advantage of the suggested method. In addition, accurate results for the stress intensity factors (SIFs) at crack tips have been found in a numerical example. Finally, several numerical examples are given to illustrate the efficiency of the method presented.