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ABSTRACT. In this paper, we study the LP mapping properties of singular integral oper-
ators related to homogeneous mappings on product spaces with kernels which belong to
L(log™ L)2. Our results extend as well as improve some known results on singular inte-
grals.

1. Introduction

Let n,m > 2 and let S?"!(d = n or m) denote the unit sphere in R¢ which is
equipped with the normalized Lebesgue measure do = do (-). For a nonzero point
r € RY welet o’ = x/|x|. Let Kq(-,-) be the singular kernel on R™ x R™ given
by

(1.1) Ka (u,v) = Q (/") [u] " Jo| ™,

where Q € L*(S"~! x 8™~1) and satisfies the cancellation conditions

(1.2) / Q(u,-)do (u) = / Q(-,v)do (v) =0.
Sn—1 Sm—1
For suitable mappings I' : R” — RY and T : R — RM, define the singular
integral operator Tt v o and its related maximal truncated operator Iy y , on the
product space R™ x R™ by

(1.3) Try.of(z,y) =p.v. /Rn o fl@-=T(u),y—"T{)) Kq (u,v)dudv,
(1.4) Tr v of(2,y)
= sup / fl@—-T(u,y—"T{)) Kq (u,v) dudv
€1,2>0 | J{|u[>e1,|v|>e2}
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for f € S(RY x RM).

When (N, M) = (n,m) and (I'(z), Y(y)) = (z,y) for (z,y) € R® x R™, the
operators To = TIryo and T, = 17 v o become the classical Calderén-Zygmund
singular integral operator and its corresponding maximal truncated operator on the
product space R™ x R™:

To f—>p.v./ f(x—u,y—v) Kq (u,v) dudv,
RVZXR"TL

To : f— sup

€1,62>0

/ f @z —u,y—v) Kq (u,v) dudv|.
{lu[ze1,[v|=e2}

The LP boundedness of the operators T and T, under various conditions on
Q, has been investigated by many authors ([3], [7], [9], [11], [12]). For example, R.
Fefferman and E. Stein proved in [12] that T and T¢, are bounded on LP(R™™)
for 1 < p < oo if Q satisfies certain Lipschitz conditions. Subsequently in [7],
Duoandikoetxea established the LP (1 < p < oo) boundedness of Ty, under the
weaker condition € L9(S"~! x S™~1) (with ¢ > 1) and then in Fan-Guo-Pan [9)
for 2 belongs to the block space Béo’l) (S"~1 x 8™~1) for some g > 1 which contains
Udgst L4(S™~1 x 8™~1) as a proper subspace (for p = 2, it was proved by Jiang and
Luin [13]). In [3], Al-Qassem and Pan established the L? (1 < p < 00) boundedness
of the more general class of operators It v o and T y o if 2 € B((IO’I)(S”_1 x §m=1)
for some ¢ > 1 and ', T are polynomial mappings on R and R, respectively.

Very recently, Al-Salman-Al-Qassem-Pan [2] were able to show that the LP
(1 < p < oo) boundedness of T and T¢ holds if Q € L(log™ L)?(S"~! x §™~1).
Furthermore, the condition that Q € L(log™ L)?(S"~! x 8™~1) turns out to be the
most desirable size condition for the LP boundedness of T. This was made clear
by the authors of [2], where it was shown that T may fail to be bounded on L? for
any p if the condition is replaced by the condition Q € L(log™ L)?>=¢(S"~! x 8™~ 1)
for any € > 0.

In order to state our main result, we first give the following definition.

Definition. For d = (dy,--- ,d;) € R}, define the family of dilations {d;}¢~¢ on R/
by
5t(x1, e ’xl) — (td1x17 S tdlxl) .
We say that ' : R® — R! is a (non-isotropic) homogeneous mapping of degree d
if
[(tx) = 0,(I'(x))

holds for all x € R™\{0} and ¢ > 0.

The main result in this paper is the following:

Theorem 1.1. Let Tryq and 17 y o given by (1.3)-(1.4), respectively. Sup-
pose that Q € L(log" L)? (S"~! x S™~1) and satisfies (1.2). Let ' : R* — RV,
T : R™ — RM be homogeneous mappings of degrees d = (di,--- ,dy) and
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h = (h1, - ,har), respectively with dy, h, # 0 for 1 <I < N and1 <r < M.
Assume that T'| S"~1 and Y | S™1 are real-analytic mappings. Then there exists
a positive constant C), > 0 such that

(1.5) 1T r (NI, < Cpllfll,
and
(1.6) 1T 1.0, < G,

for any f € LP (R™ x R™) with 1 < p < co.

We point out that Theorem 1.1 extends and improves the corresponding results
in [12] and [7]. Also, we point out that the one parameter case of Theorem 1.1 was
studied by many authors (see for example [10], [6], [1]). The paper is organized
as follows. In Section 2, a few lemmas will be recalled or proved. The proof of
Theorem 1.1 can be found in Section 3.

Throughout this paper, the letter C' will denote a positive constant whose value
may change at each appearance but independent of the essential variables.

2. Preliminary results

Definition 2.1. For p € NU{0} and k € Z, let a, = 2" and Ik#:[aff,aff*l).
For suitable mappings I' : R*\{0} — R and T : R™\{0} — R and a suitable
function Q, € L'(S"~! x 8™~ 1), we define the sequence of measures {\x v,
k,jeZ} and its corresponding maximal operator A} v " by

JdXejrrp
RN xRM

/{(u,v)ER" xR™: (Jul,|v|)€lg, %14}

F(T (), T () Kq, (u,v) dvdu,

)\F7T7M (f) = Sup ||Ak7J,F7T7M| * f|
k,jEZ

We shall need the following two lemmas due to Ricci and Stein.

Lemma 2.2 ([15]). Let v(t) = (a1t®, -+ ,an,t®™), where a;, ¢ € R for 1 <1 <n.
Let M_ be the mazimal operator defined on R™ by

[ e

for x € R". Then, for 1 <p < oo, there exists a constant C, > 0 such that

M su
@ R>I()) R

ML, < Collf,
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for all f in L? (R™). The constant C,, is independent of a; for all1 <1 < n.

Lemma 2.3. Let v (t) = (a1t?, - ,anti), ¥ (s) = (b1s™, -+ ,bps™), where ay,
qi, bs andrs € R for 1 <1 <mn and1<s<m. Let M,y be the mazimal operator
defined on R™ x R™ by

My of ()= sup (RiRp)™'

R1,R2>0

Ry Ro>
/ flx—7(@),y—9(s))dtds
0 0

for (z,y) € R™ x R™. Then, for 1 < p < oo, there exists a positive constant C,
such that

(2.1) [Maofll, < Cpllfll,

for all f in LP (R™ x R™). The constant C), is independent of a;and bs for all
1<i<nandl <s<m.

The proof of this lemma follows easily by using Lemma 2.2 and the inequality
Moo f(z,y) <M, oM. f(x,y), where “o” denotes the composition of operators.

We shall need the following lemma of van der Corput type proved by Ricci and
Stein in [14].

Lemma 2.4. Letn € N,u1,--- ,un € R and ay,--- ,a, be distinct positive real
numbers. Let e = min{1/a1,1/n} and ¢ € C1([0,1]).Then there ezists a positive
constant C independent of {u;} such that

B

o

< Clpl|™ (Iz/f(ﬂ)l +/ v/ (t)ldt> ,

o

holds for 0 < a < < 1.

Now, in Lemma 2.4, if 1/2 < a < § < 1 and some of the a;’s are negative, we
get the following lemma which can proved by using the arguments employed in the
proof of lemma 3 in [14].

Lemma 2.5. Letn € N pu1,--- ,un € R and aq,--- ,a, be distinct nonzero real
numbers. Then there exists a positive constant Cindependent of {p;} such that

B
/ ei(mt“l+u2t“2+»--+unt“">w (t)dt

a

< Cl | (It/f(ﬂ)l +/ ¥/ (t)ldt> :

holds for 1/2 < a < 3 <1 and v € C([1/2,1]).
We shall need the following lemma from [6]:

Lemma 2.6. Forj € {1,2}, let U; be a domain in R™ and K; a compact subset of
U;. Let R(-,-) be a real-analytic function on Uy x Uy such that R(-,y) is a nonzero
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function for every y € Usy. Then there exists a positive constant § = §(R, K1, K>)
such that

Sup/ |R(z,y)|° dz < co.
yeEK2 J K,y

By tracking the constants in the proof of Lemma 1 in [7], we have the following:

Lemma 2.7. Let A > 0 and let {\i. ;} be a sequence of Borel measures on R xR™.
Suppose that ||Squ,jez || Ak, * f|||q0 < Alfll,, for some qo > land for every f in

Lo (R™ x R™). Then the inequality

1/2

1/2
(2:2) > e * gl (A sup ||)‘k3|) > lgnil?
Po

k,jEZ k.jez k,jEZ

1/2

Po
holds for |1/po — 1/2| = 1/(2q0) and for arbitrary functions {gx, ;} on R™ x R™.

The following result follows directly from Lemma 2.7 and Theorem 16 due to
Al-Qassem and Pan in [3] which is a generalization of a result of J. Duoandikoetxea

7.

Lemma 2.8. Let M, N € N and let {\\") : k, j € Z,0< 1< N, 0<s< M}

be a family of Borel measures on R™ x R™with )\(ZJM) =0 and )\(N =0 for k,
jE€Z Let{a;, bs :0<I<N-1,0<s<M-—1} C [2,00), {b() d(s):0<
lSN—l,OSSSM—l}CN {a, 3 :0<I<N—-1,0<s<M-1} CR",
and let LV ¢ LR™ R!W) and Q) € L(R™, R ®)) be for 0 <1 < N —1 and
0 < s <M — 1,where L(R™,RY) denotes the space of linear transformations from
R" into RN. Suppose that for some C > 0 and B > 1, the following hold for k,
JEZ,0<I<N-1,0<s<M-—1and (&n) e R"xR™:

(@) | < 0B

i) A n>] < B2 [afP 10 )] [07QW ()| ¥

s Q. . _Bs
Gii) [\ (€ m) = AT (6m)| < OB [afPLO ()7 08P Q) ()|
“(Ls c(Ls . 8
(iv) A;(f,’j)(ﬁm)—Ag,’jﬂ)(f,n)‘SCBQIGfBL(” O 7 [p2PQW ()]
) A Em) = AT Em) = AL (e + ATV 6|
Bs
B

?

< CB?|abPLO (6)| ® piPQ© ()

s ~ s A
(i) AL Em) = AL e )| < 082 [af L0 (9)] 7
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Bs
B

(vit) AL gm) = AT ()| < CB2HEQ) ()

)

(viti) [[suy jez [A)] < 1]|| < CB2 I, for 1 <p< o
P

and for every f in LP (R™ x R™). Then for every 1 < p < 0o, there exists a positive
constant Cp, independent of {L(l), Q¥ 0<I<N-1,0<s<M-— 1} such that

(2.3) STAMVwf|| < B IfI,

kjEZ
J p

hold for all f in LP (R™ x R™).

3. Proof of Theorem 1.1

Assume that Q € L(log™ L)?(S"~! x 8™~1) and satisfies (1.2). We decompose
Q as follows: For p € N, let E, = {(z,y) € S"~! x S™~1:2" < |Q(z,y)| < 2",
b, =Qxs, and A, = b, || . Let D= {ueN:x, > 2},

Q@y = () (b#(ﬂi,y)—/sn1bu(u,y)da(u)—/smlb#(%v)do(v)
+/Sn—1><sm—1 b, (u,v)do(u)da(v)>

for p € Nand Q) =Q— >3 A Q . Then it is easy to verify that

neD
(3.1) /sn_1 Q, (u,-)do (u) = /m_1 Q, (-,v)do (v) =0,
(32) HQH HZ S 4(0,“)2,
33) o, < 4
34)  Qazy) = Y AQ.(x),
pneDU{0}

for 4 € DU {0}, where we used Ao = 1. Thus

(3.5) ITrxel, < Y Pl|mrre, ) .
neDU{0} :
(3.6) ITteal, < 3 W |Tira, 0

neDU{0}
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Therefore, to prove (1.5)-(1.6), it suffices to prove that

(3.7) |70, (0

(3.8) |7ra, ]|

IA

Cp(p+ 12 [I£1l, »

Cp(p+ 1% |11,

IA

for 1 < p < oo and p € DU{0}. Let us first prove (3.7). To this end, by assumptions
=Ty, --,y):R" - RN and Y = (Y4, -+, Ty) : R™ — RM are homoge-
neous mappings of degrees d = (di,--- ,dn) and h = (hy,--- , har), respectively
such that T" | S 1 and T | S™~1 are real-analytic and dj, hs #0for 1 <l < N
and 1 < s < M. In view of Lemmas 2.4-2.5, we shall only prove our theorem for
the case dyi,--- ,dn,h1, -+ ,hpr > 0. The argument for the other cases that some
or all of the d;’s and h,’s are negative is similar and requires only minor modifica-
tions. If {I") : d; = d1} = {0} or {Ys : hy = h1} = {0}, then TFTQ is the zero
operator and hence (3.7) holds trivially. Now, if {I'; : d; = d1} # {0} and {Y :
hs = h1} # {0}, by a simple reordering of the mappings I'1,--- ,Tn, Y1, -, Tar,
if necessary, we may assume that there are z1, Zz1, wy and w; € N such that z; <
Z<N,{l:1<I<Nanddj=di}={1,-, -1}, <ws <M, {s:1<s<M
and hy = hy} = {1,--- a1}, {T1,---,T,,} forms a basis for span{l'y,--- Tz}
and {Yy,---, Yy, } forms a basis for span{Yy, -+, Ty, }.

Let &g =T, ®, = (0,---,0,0s, 41, -, I'n), Uo =T, Ty = (0, ,0,Tep, 1, ,
Tar), and )\(l R = Agjr,7,u for l,s € {0,1}. Under the above assumptions, we

kg
have the following;:

Lemma 3.1. There exist L € L(R*,R*'), Q € L(R®,R"“") and positive con-
stants ag, Bo and C such that

(39) S;L(57 )‘ < C(M + 1)2f07” l, s € {O’ ]_}’
_ 0 _ 8o
(3.10) ‘)‘Efojo,i (&, 77)‘ < Cp+ 1)2 ‘aﬁdlL(o) (5)’ TES Y aith(O) (77)‘ ==Y ;

_Bo_
ptl1 .

(3.11) [0 (6 m) — A% 6| < Clur 12 b 20 ) 7 [ QO (i)

_Bo_

(3.12) [0 (6m) — AL 6| < Ol 12 b1 10 () o o) )
(3.13) NG En - A En)| < Clurn? okt L o)
_Bo_
B14) [N - AhEn| < Cur1?]aQ0 o)
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A€ = A Em) ~ A + A e

Bo
;L+1
)

(3.15) < O(,u + 1)2 ‘aﬁdlL(O) (g) ufl ]th(O ( )

for all (&) € RN x RM where L0 (¢) = L(I13¢), Q) (n) = Q(Ilg,n),
1z, & = (51» RS ) and Iy, n = (7717 the »77151)'

Proof. First, it is easy to verify that (3.9) holds trivially. Now, we prove (3.10).
By assumptions, there exist two linear t{ansformations L = (Ly,---,L,,) €
LR, R*) and Q = (Q1, -+, Quw,) € L(R*,R*?) such that

3 16 Zfll—‘l ZLZ H21§ Fl and Zns s = ZQS(Hﬁ)ln)Ts(y)
s=1

Thus we have

— o) dt
enen|<cusn [ jaewl|[ et i,
Sn—lxgm—1 1/a,
where
N
(3.17) Ye i (t, ) (Z&Fl )td1a£k+1)d1 + Z gsrs(x)tdsa;(thrl)dsl
s=z1+1

Define R: S» ! x §#1~! — R by

u) = Z w 'y (z)
1=1

where z € S"7! and u = (uy, -+ ,u,,) € S*71. Since {I'y,---,I',,} is linearly
independent, R(-,u) is a nonzero function for every u € S**~1. By Lemma 2.6,
there exists a 7 > 0 such that

(3.18) sup / |R(z,u)| ™" do(z) < cc.
ueS*1-1Jgn-1
By letting ¢ = min{1/dy,1/N,61/2},(3.2), (3.18) and Hélder’s inequality, we get

—€

do(z)do(y)

M| <o+ [ 2, (x.9)|

Sn—1lyS§m-—1

Zl Li(ITz, §)Ty(x)
=1

—€

IN

kdl L(Hzl 5)

—€

COut D 2, g s

(3.19) < ClutVa; ™ (a,)? [af" (1T, )

m
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Thus, by combining the last estimate with the trivial estimate ’;\(0’.0) (&, 77)‘ <C(u+

LN/
1)2, we get
A —e/(u+1)
(3.20) A€ M| < Cu+1)? |l L(11:,8) .
Similarly, we have
. —B/(p+1)
(3.21) A < Clu+ 1)? [0 Qg )| :

Combining the last two estimates yields (3.10). Next, we prove (3.11).

2(0,0 01
A;j’;(f’n) ) 5 77 /1/& /S" Ixgm—1 x y)‘

1
/ —’LYg k(t w) dt
1/a“ t

where Y i (¢, z) is given by (3.17). By a similar argument as that employed in the
proof of (3.10) we get

— 7 s i 7 s d
‘ i Wo(altlsy) _ —in¥i(alt! y)‘d (y);s

A0 € — AL ] < OOt a2, [k L0 @) a0 Q) ()

which when combined with the trivial estimate ’/\(O :0) (&m) — ;(cojli(fy 77)‘ <C(p+

k.jp
1)? yields (3.11). Similarly, we get (3.12)-(3.15). The proof of the lemma is com-
plete. |
Similarly, by using (3.1)-(3.3) we can find additional mappings ®o,---, Px

from R™ \ {0} to RY, Wy, -+, ¥, from R™\ {0} to RM, {a;, 3, : 1 <I< K —1,
1 <s<J-1} C (0,00), appropriate linear transformations {L(), Q) : 1 <1 <
K—-1,1<s<.J—1}, two sets of distinct real numbers {d,, : 1 <1 < K — 1},

{he, 11 <s<J—1bwith{dy, :1 <1< K-1}={d :2 <1< NN\{d},
{hys 11 <s<J—=1} ={hs:2 < s < M}I{hi} and a finite family of measures
{)\fcl;)u :2<I <K, 2<s<J} with the following properties:

@K = (O,,O),\I/J:(O,,O),

M2 Em) = Nejgusnw, for 2<1<Kand 2 <s < J;
,(fgz) = )\SJJ#—Ofor2<l<Kand2<s<J
l,s
(3.22) L Em)| < Clus D
(l,s) _% - [ifl
N u ; s m

(323)  [NLEm)| < Clut 12 [abtaL® )] T ol ()
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(3.24) . ,
AL Em = AL € m| < Gt 12 [alkta L0 (€T a0 ()] T
(3.25)

L _Bs
T e

A Em = ALY €| < Clu+ 12 [abktn L0 ()|

jhys ) (s)
al™ Q' (n)

1
(I,s {1 s L
(3200 MV - AL Em)| < Ot 1)? |l L0 (6] 7T
Bs
S ; s JTEY
(3.27) Duem) = M m)| < O+ 1) |l QW ()|
l,s l,s+1 I+1,s I+1,s+1
e = MG =M+ M )
T Bs
(3.28) < Clut 1) fabta 1O ()7 o) ()|

for1<I<K-1land1l<s<J-1.By(3.3) and Lemma 2.3, we immediately get

(3.29) sup H/\(J )

p(n+ 1211,
kjez

for 1l <p<oo,0<I<K-1land0<s <J-1 By (3.9)-(3.15), (3.22)-(3.28),
Lemma 2.8, we have

330 |Tera, (0] = X N I| <G w11,

kjEZ
JE p

for 1 <p < ooand f € LP(R™x R™) which completes the proof of (3.7).
We can construct a proof of (3.8) by using the above estimates and the tech-
niques developed in [3]. We omit the details.
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