L^p Boundedness for Singular Integral Operators with $L(\log^+ L)^2$ Kernels on Product Spaces

HUSSAIN AL-QASSEM AND MOHAMMED ALI
Department of Mathematics, Yarmouk University, Irbid-Jordan
e-mail: husseink@yu.edu.jo and hamadneh2004@hotmail.com

ABSTRACT. In this paper, we study the L^p mapping properties of singular integral operators related to homogeneous mappings on product spaces with kernels which belong to $L(\log^+ L)^2$. Our results extend as well as improve some known results on singular integrals.

1. Introduction

Let $n, m \geq 2$ and let $\mathbf{S}^{d-1}(d=n \text{ or } m)$ denote the unit sphere in \mathbf{R}^d which is equipped with the normalized Lebesgue measure $d\sigma = d\sigma(\cdot)$. For a nonzero point $x \in \mathbf{R}^d$, we let x' = x/|x|. Let $K_{\Omega}(\cdot, \cdot)$ be the singular kernel on $\mathbf{R}^n \times \mathbf{R}^m$ given by

(1.1)
$$K_{\Omega}(u,v) = \Omega(u',v') |u|^{-n} |v|^{-m},$$

where $\Omega \in L^1(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ and satisfies the cancellation conditions

(1.2)
$$\int_{\mathbf{S}^{n-1}} \Omega\left(u,\cdot\right) d\sigma\left(u\right) = \int_{\mathbf{S}^{m-1}} \Omega\left(\cdot,v\right) d\sigma\left(v\right) = 0.$$

For suitable mappings $\Gamma: \mathbf{R}^n \longrightarrow \mathbf{R}^N$ and $\Upsilon: \mathbf{R}^m \longrightarrow \mathbf{R}^M$, define the singular integral operator $T_{\Gamma,\Upsilon,\Omega}$ and its related maximal truncated operator $T_{\Gamma,\Upsilon,\Omega}^*$ on the product space $\mathbf{R}^n \times \mathbf{R}^m$ by

(1.3)
$$T_{\Gamma,\Upsilon,\Omega}f(x,y) = \text{p.v.} \int_{\mathbb{R}^{n}\times\mathbb{R}^{m}} f(x-\Gamma(u),y-\Upsilon(v)) K_{\Omega}(u,v) du dv,$$

$$(1.4) T_{\Gamma,\Upsilon,\Omega}^{*}f(x,y)$$

$$= \sup_{\varepsilon_{1},\varepsilon_{2}>0} \left| \int_{\{|u|\geq\varepsilon_{1},|v|\geq\varepsilon_{2}\}} f(x-\Gamma(u),y-\Upsilon(v)) K_{\Omega}(u,v) du dv \right|$$

Received March 3, 2005.

2000 Mathematics Subject Classification: 42B20, 42B15, 42B25.

Key words and phrases: singular integrals, oscillatory integrals, Fourier transform, product spaces, rough kernels.

for $f \in \mathcal{S}(\mathbf{R}^N \times \mathbf{R}^M)$.

When (N, M) = (n, m) and $(\Gamma(x), \Upsilon(y)) = (x, y)$ for $(x, y) \in \mathbf{R}^n \times \mathbf{R}^m$, the operators $T_{\Omega} = T_{\Gamma, \Upsilon, \Omega}$ and $T_{\Omega}^* = T_{\Gamma, \Upsilon, \Omega}^*$ become the classical Calderón-Zygmund singular integral operator and its corresponding maximal truncated operator on the product space $\mathbf{R}^n \times \mathbf{R}^m$:

$$T_{\Omega} : f \to \text{p.v.} \int_{\mathbf{R}^{n} \times \mathbf{R}^{m}} f(x - u, y - v) K_{\Omega}(u, v) du dv,$$

$$T_{\Omega}^{*} : f \to \sup_{\varepsilon_{1}, \varepsilon_{2} > 0} \left| \int_{\{|u| \geq \varepsilon_{1}, |v| \geq \varepsilon_{2}\}} f(x - u, y - v) K_{\Omega}(u, v) du dv \right|.$$

The L^p boundedness of the operators T_Ω and T^*_Ω , under various conditions on Ω , has been investigated by many authors ([3], [7], [9], [11], [12]). For example, R. Fefferman and E. Stein proved in [12] that T_Ω and T^*_Ω are bounded on $L^p(\mathbf{R}^{n+m})$ for $1 if <math>\Omega$ satisfies certain Lipschitz conditions. Subsequently in [7], Duoandikoetxea established the L^p $(1 boundedness of <math>T_\Omega$ under the weaker condition $\Omega \in L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ (with q > 1) and then in Fan-Guo-Pan [9] for Ω belongs to the block space $B^{(0,1)}_q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ for some q > 1 which contains $\bigcup_{d>1} L^d(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ as a proper subspace (for p=2, it was proved by Jiang and Lu in [13]). In [3], Al-Qassem and Pan established the L^p $(1 boundedness of the more general class of operators <math>T_{\Gamma,\Upsilon,\Omega}$ and $T^*_{\Gamma,\Upsilon,\Omega}$ if $\Omega \in B^{(0,1)}_q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ for some q > 1 and Γ,Υ are polynomial mappings on \mathbf{R}^n and \mathbf{R}^m , respectively.

Very recently, Al-Salman-Al-Qassem-Pan [2] were able to show that the L^p $(1 boundedness of <math>T_{\Omega}$ and T_{Ω}^* holds if $\Omega \in L(\log^+ L)^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$. Furthermore, the condition that $\Omega \in L(\log^+ L)^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ turns out to be the most desirable size condition for the L^p boundedness of T_{Ω} . This was made clear by the authors of [2], where it was shown that T_{Ω} may fail to be bounded on L^p for any p if the condition is replaced by the condition $\Omega \in L(\log^+ L)^{2-\varepsilon}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ for any $\varepsilon > 0$.

In order to state our main result, we first give the following definition.

Definition. For $d = (d_1, \dots, d_l) \in \mathbf{R}^l$, define the family of dilations $\{\delta_t\}_{t>0}$ on \mathbf{R}^l by

$$\delta_t(x_1,\cdots,x_l) = \left(t^{d_1}x_1,\cdots,\ t^{d_l}x_l\right).$$

We say that $\Gamma: \mathbf{R}^n \longrightarrow \mathbf{R}^l$ is a (non-isotropic) homogeneous mapping of degree d if

$$\Gamma(tx) = \delta_t(\Gamma(x))$$

holds for all $x \in \mathbf{R}^n \setminus \{0\}$ and t > 0.

The main result in this paper is the following:

Theorem 1.1. Let $T_{\Gamma,\Upsilon,\Omega}$ and $T^*_{\Gamma,\Upsilon,\Omega}$ given by (1.3)-(1.4), respectively. Suppose that $\Omega \in L(\log^+ L)^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ and satisfies (1.2). Let $\Gamma : \mathbf{R}^n \longrightarrow \mathbf{R}^N$, $\Upsilon : \mathbf{R}^m \longrightarrow \mathbf{R}^M$ be homogeneous mappings of degrees $d = (d_1, \dots, d_N)$ and

 $h = (h_1, \dots, h_M)$, respectively with d_l , $h_r \neq 0$ for $1 \leq l \leq N$ and $1 \leq r \leq M$. Assume that $\Gamma \mid \mathbf{S}^{n-1}$ and $\Upsilon \mid \mathbf{S}^{m-1}$ are real-analytic mappings. Then there exists a positive constant $C_p > 0$ such that

$$(1.5) $||T_{\Gamma,\Upsilon,\Omega}(f)||_{p} \leq C_{p} ||f||_{p},$$$

and

$$(1.6) $||T_{\Gamma,\Upsilon,\Omega}^*(f)||_p \le C_p ||f||_p$$$

for any $f \in L^p(\mathbf{R}^n \times \mathbf{R}^m)$ with 1 .

We point out that Theorem 1.1 extends and improves the corresponding results in [12] and [7]. Also, we point out that the one parameter case of Theorem 1.1 was studied by many authors (see for example [10], [6], [1]). The paper is organized as follows. In Section 2, a few lemmas will be recalled or proved. The proof of Theorem 1.1 can be found in Section 3.

Throughout this paper, the letter C will denote a positive constant whose value may change at each appearance but independent of the essential variables.

2. Preliminary results

Definition 2.1. For $\mu \in \mathbb{N} \cup \{0\}$ and $k \in \mathbb{Z}$, let $a_{\mu} = 2^{(\mu+1)}$ and $I_{k,\mu} = [a_{\mu}^{k}, a_{\mu}^{k+1})$. For suitable mappings $\Gamma : \mathbb{R}^{n} \setminus \{0\} \longrightarrow \mathbb{R}^{N}$ and $\Upsilon : \mathbb{R}^{m} \setminus \{0\} \longrightarrow \mathbb{R}^{M}$ and a suitable function $\Omega_{\mu} \in L^{1}(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1})$, we define the sequence of measures $\{\lambda_{k,j,\Gamma,\Upsilon,\mu} : k, j \in \mathbb{Z}\}$ and its corresponding maximal operator $\lambda_{\Gamma,\Upsilon,\mu}^{*}$ by

$$\int_{\mathbf{R}^{N}\times\mathbf{R}^{M}} f d\lambda_{k,j,\Gamma,\Upsilon,\mu}
= \int_{\{(u,v)\in\mathbf{R}^{n}\times\mathbf{R}^{m}: (|u|,|v|)\in I_{k,\mu}\times I_{j,\mu}\}} f\left(\Gamma\left(u\right),\Upsilon\left(v\right)\right) K_{\Omega_{\mu}}\left(u,v\right) dv du,
\lambda_{\Gamma,\Upsilon,\mu}^{*}\left(f\right) = \sup_{k,j\in\mathbf{Z}} ||\lambda_{k,j,\Gamma,\Upsilon,\mu}| * f|.$$

We shall need the following two lemmas due to Ricci and Stein.

Lemma 2.2 ([15]). Let $\gamma(t) = (a_1 t^{q_1}, \dots, a_n t^{q_n})$, where $a_l, q_l \in \mathbf{R}$ for $1 \le l \le n$. Let \mathcal{M}_{γ} be the maximal operator defined on \mathbf{R}^n by

$$\mathcal{M}_{\gamma} f\left(x\right) = \sup_{R>0} \frac{1}{R} \left| \int_{0}^{R} f\left(x - \gamma\left(t\right)\right) dt \right|$$

for $x \in \mathbf{R}^n$. Then, for $1 , there exists a constant <math>C_p > 0$ such that

$$\left\| \mathcal{M}_{\gamma} f \right\|_{p} \le C_{p} \left\| f \right\|_{p}$$

for all f in $L^p(\mathbf{R}^n)$. The constant C_p is independent of a_l for all $1 \le l \le n$.

Lemma 2.3. Let $\gamma(t) = (a_1 t^{q_1}, \dots, a_n t^{q_n}), \ \vartheta(s) = (b_1 s^{r_1}, \dots, b_m s^{r_m}), \ where \ a_l, \ q_l, \ b_s \ and \ r_s \in \mathbf{R} \ for \ 1 \le l \le n \ and \ 1 \le s \le m.$ Let $\mathcal{M}_{\gamma,\vartheta}$ be the maximal operator defined on $\mathbf{R}^n \times \mathbf{R}^m$ by

$$\mathcal{M}_{\gamma,\vartheta}f(x,y) = \sup_{R_1,R_2 > 0} (R_1 R_2)^{-1} \left| \int_0^{R_1} \int_0^{R_2} f(x - \gamma(t), y - \vartheta(s)) dt ds \right|$$

for $(x,y) \in \mathbf{R}^n \times \mathbf{R}^m$. Then, for $1 , there exists a positive constant <math>C_p$ such that

for all f in $L^p(\mathbf{R}^n \times \mathbf{R}^m)$. The constant C_p is independent of a_l and b_s for all $1 \le l \le n$ and $1 \le s \le m$.

The proof of this lemma follows easily by using Lemma 2.2 and the inequality $\mathcal{M}_{\gamma,\vartheta}f\left(x,y\right) \leq \mathcal{M}_{\vartheta} \circ \mathcal{M}_{\gamma}f\left(x,y\right)$, where "o" denotes the composition of operators. We shall need the following lemma of van der Corput type proved by Ricci and Stein in [14].

Lemma 2.4. Let $n \in \mathbb{N}, \mu_1, \dots, \mu_n \in \mathbb{R}$ and a_1, \dots, a_n be distinct positive real numbers. Let $\varepsilon = \min\{1/a_1, 1/n\}$ and $\psi \in C^1([0,1])$. Then there exists a positive constant C independent of $\{\mu_j\}$ such that

$$\left| \int_{\alpha}^{\beta} e^{i(\mu_{1}t^{a_{1}} + \mu_{2}t^{a_{2}} + \dots + \mu_{n}t^{a_{n}})} \psi\left(t\right) dt \right| \leq C \left| \mu_{1} \right|^{-\varepsilon} \left(\left| \psi\left(\beta\right) \right| + \int_{\alpha}^{\beta} \left| \psi'\left(t\right) \right| dt \right),$$

holds for $0 \le \alpha < \beta \le 1$.

Now, in Lemma 2.4, if $1/2 \le \alpha < \beta \le 1$ and some of the a_j 's are negative, we get the following lemma which can proved by using the arguments employed in the proof of lemma 3 in [14].

Lemma 2.5. Let $n \in \mathbb{N}, \mu_1, \dots, \mu_n \in \mathbb{R}$ and a_1, \dots, a_n be distinct nonzero real numbers. Then there exists a positive constant Cindependent of $\{\mu_i\}$ such that

$$\left| \int_{\alpha}^{\beta} e^{i(\mu_1 t^{a_1} + \mu_2 t^{a_2} + \dots + \mu_n t^{a_n})} \psi\left(t\right) dt \right| \leq C \left| \mu_1 \right|^{-1/n} \left(\left| \psi\left(\beta\right) \right| + \int_{\alpha}^{\beta} \left| \psi'\left(t\right) \right| dt \right),$$

holds for $1/2 \le \alpha < \beta \le 1$ and $\psi \in C^1([1/2, 1])$.

We shall need the following lemma from [6]:

Lemma 2.6. For $j \in \{1,2\}$, let U_j be a domain in \mathbb{R}^{n_j} and K_j a compact subset of U_j . Let $R(\cdot,\cdot)$ be a real-analytic function on $U_1 \times U_2$ such that $R(\cdot,y)$ is a nonzero

function for every $y \in U_2$. Then there exists a positive constant $\delta = \delta(R, K_1, K_2)$ such that

 $\sup_{y \in K_2} \int_{K_1} |R(x,y)|^{-\delta} dx < \infty.$

By tracking the constants in the proof of Lemma 1 in [7], we have the following:

Lemma 2.7. Let A > 0 and let $\{\lambda_{k,j}\}$ be a sequence of Borel measures on $\mathbf{R}^n \times \mathbf{R}^m$. Suppose that $\|\sup_{k,j \in \mathbf{Z}} \|\lambda_{k,j}\| * f\|_{q_0} \le A \|f\|_{q_0}$ for some $q_0 > 1$ and for every f in $L^{q_0}(\mathbf{R}^n \times \mathbf{R}^m)$. Then the inequality

$$(2.2) \left\| \left(\sum_{k,j \in \mathbf{Z}} |\lambda_{k,j} * g_{k,j}|^2 \right)^{1/2} \right\|_{p_0} \le \left(A \sup_{k,j \in \mathbf{Z}} \|\lambda_{k,j}\| \right)^{1/2} \left\| \left(\sum_{k,j \in \mathbf{Z}} |g_{k,j}|^2 \right)^{1/2} \right\|_{p_0}$$

holds for $|1/p_0 - 1/2| = 1/(2q_0)$ and for arbitrary functions $\{g_{k,j}\}$ on $\mathbb{R}^n \times \mathbb{R}^m$.

The following result follows directly from Lemma 2.7 and Theorem 16 due to Al-Qassem and Pan in [3] which is a generalization of a result of J. Duoandikoetxea [7].

Lemma 2.8. Let $M, N \in \mathbf{N}$ and let $\{\lambda_{k,j}^{(l,s)} : k, j \in \mathbf{Z}, 0 \leq l \leq N, 0 \leq s \leq M\}$ be a family of Borel measures on $\mathbf{R}^n \times \mathbf{R}^m$ with $\lambda_{k,j}^{(l,M)} = 0$ and $\lambda_{k,j}^{(N,s)} = 0$ for $k, j \in \mathbf{Z}$. Let $\{a_l, b_s : 0 \leq l \leq N-1, 0 \leq s \leq M-1\} \subset [2,\infty), \{b(l), d(s) : 0 \leq l \leq N-1, 0 \leq s \leq M-1\} \subset \mathbf{N}, \{\alpha_l, \beta_s : 0 \leq l \leq N-1, 0 \leq s \leq M-1\} \subseteq \mathbf{R}^+,$ and let $L^{(l)} \in L(\mathbf{R}^n, \mathbf{R}^{b(l)})$ and $Q^{(s)} \in L(\mathbf{R}^m, \mathbf{R}^{d(s)})$ be for $0 \leq l \leq N-1$ and $0 \leq s \leq M-1$, where $L(\mathbf{R}^n, \mathbf{R}^N)$ denotes the space of linear transformations from \mathbf{R}^n into \mathbf{R}^N . Suppose that for some C > 0 and B > 1, the following hold for $k, j \in \mathbf{Z}, 0 \leq l \leq N-1, 0 \leq s \leq M-1$ and $(\xi, \eta) \in \mathbf{R}^n \times \mathbf{R}^m$:

(i)
$$\left|\lambda_{k,j}^{(l,s)}\right| \le CB^2;$$

$$(ii) \left| \hat{\lambda}_{k,j}^{(l,s)}(\xi,\eta) \right| \leq CB^2 \left| a_l^{kB} L^{(l)}\left(\xi\right) \right|^{-\frac{\alpha_l}{B}} \left| b_s^{jB} Q^{(s)}\left(\eta\right) \right|^{-\frac{\beta_s}{B}};$$

$$\left(\mathrm{iii}\right)\ \left|\hat{\lambda}_{k,j}^{(l,s)}(\xi,\eta)-\hat{\lambda}_{k,j}^{(l+1,s)}(\xi,\eta)\right|\leq CB^{2}\left|a_{l}^{kB}L^{(l)}\left(\xi\right)\right|^{\frac{\alpha_{l}}{B}}\left|b_{s}^{jB}Q^{(s)}\left(\eta\right)\right|^{-\frac{\beta_{s}}{B}};$$

$$\text{(iv)}\ \left|\hat{\lambda}_{k,j}^{(l,s)}(\xi,\eta) - \hat{\lambda}_{k,j}^{(l,s+1)}(\xi,\eta)\right| \leq CB^2 \left|a_l^{kB}L^{(l)}\left(\xi\right)\right|^{-\frac{\alpha_l}{B}} \left|b_s^{jB}Q^{(s)}\left(\eta\right)\right|^{\frac{\beta_s}{B}};$$

$$\begin{aligned} \text{(v)} & \left| \hat{\lambda}_{k,j}^{(l,s)}(\xi,\eta) - \hat{\lambda}_{k,j}^{(l+1,s)}(\xi,\eta) - \hat{\lambda}_{k,j}^{(l,s+1)}(\xi,\eta) + \hat{\lambda}_{k,j}^{(l+1,s+1)}(\xi,\eta) \right| \\ & \leq CB^2 \left| a_l^{kB} L^{(l)}(\xi) \right|^{\frac{\alpha_l}{B}} \left| b_s^{jB} Q^{(s)}(\eta) \right|^{\frac{\beta_s}{B}} ; \end{aligned}$$

$$(\text{vi)} \ \left| \hat{\lambda}_{k,j}^{(l,s+1)}(\xi,\eta) - \hat{\lambda}_{k,j}^{(l+1,s+1)}(\xi,\eta) \right| \leq CB^2 \left| a_l^{kB} L^{(l)}\left(\xi\right) \right|^{\frac{\alpha_l}{B}};$$

(vii)
$$\left| \hat{\lambda}_{k,j}^{(l+1,s)}(\xi,\eta) - \hat{\lambda}_{k,j}^{(l+1,s+1)}(\xi,\eta) \right| \le CB^2 \left| b_s^{jB} Q^{(s)}(\eta) \right|^{\frac{\beta_s}{B}};$$

(viii)
$$\left\| \sup_{k,j \in \mathbf{Z}} \left\| \lambda_{k,j}^{(l,s)} \right\| * f \right\|_{p} \le CB^{2} \left\| f \right\|_{p} \text{ for } 1$$

and for every f in $L^p(\mathbf{R}^n \times \mathbf{R}^m)$. Then for every $1 , there exists a positive constant <math>C_p$ independent of $\{L^{(l)}, Q^{(s)}: 0 \le l \le N-1, 0 \le s \le M-1\}$ such that

(2.3)
$$\left\| \sum_{k,j \in \mathbf{Z}} \lambda_{k,j}^{(0,0)} * f \right\|_{p} \le C_{p} B^{2} \left\| f \right\|_{p}$$

hold for all f in $L^p(\mathbf{R}^n \times \mathbf{R}^m)$.

3. Proof of Theorem 1.1

Assume that $\Omega \in L(\log^+ L)^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ and satisfies (1.2). We decompose Ω as follows: For $\mu \in \mathbf{N}$, let $E_{\mu} = \{(x,y) \in \mathbf{S}^{n-1} \times \mathbf{S}^{m-1} : 2^{\mu} \leq |\Omega(x,y)| < 2^{\mu+1}\}$, $b_{\mu} = \Omega \chi_{E_{\mu}}$ and $\lambda_{\mu} = \left\|\tilde{b}_{\mu}\right\|_{1}$. Let $\mathbf{D} = \{\mu \in \mathbf{N} : \lambda_{\mu} \geq 2^{\mu}\}$,

$$\begin{array}{lcl} \Omega_{\mu}(x,y) & = & \left(\lambda_{\mu}\right)^{-1} \left(b_{\mu}(x,y) - \int_{\mathbf{S}^{n-1}} b_{\mu}(u,y) d\sigma(u) - \int_{\mathbf{S}^{m-1}} b_{\mu}(x,v) d\sigma(v) + \int_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}} b_{\mu}(u,v) d\sigma(u) d\sigma(v) \right) \end{array}$$

for $\mu \in \mathbf{N}$ and $\Omega_0 = \Omega - \sum_{\mu \in \mathbf{D}} \lambda_{\mu} \Omega_{\mu}$. Then it is easy to verify that

(3.1)
$$\int_{\mathbf{S}^{n-1}} \Omega_{\mu} (u, \cdot) d\sigma (u) = \int_{\mathbf{S}^{m-1}} \Omega_{\mu} (\cdot, v) d\sigma (v) = 0,$$

(3.4)
$$\Omega(x,y) = \sum_{\mu \in \mathbf{D} \cup \{0\}} \lambda_{\mu} \Omega_{\mu}(x,y),$$

for $\mu \in \mathbf{D} \cup \{0\}$, where we used $\lambda_0 = 1$. Thus

Therefore, to prove (1.5)-(1.6), it suffices to prove that

(3.7)
$$\|T_{\Gamma,\Upsilon,\Omega_{\mu}}(f)\|_{p} \leq C_{p}(\mu+1)^{2} \|f\|_{p},$$

(3.8)
$$\left\| T_{\Gamma,\Upsilon,\Omega_{\mu}}^{*}(f) \right\|_{p} \leq C_{p}(\mu+1)^{2} \|f\|_{p}$$

for $1 and <math>\mu \in \mathbf{D} \cup \{0\}$. Let us first prove (3.7). To this end, by assumptions $\Gamma = (\Gamma_1, \cdots, \Gamma_N) : \mathbf{R}^n \to \mathbf{R}^N$ and $\Upsilon = (\Upsilon_1, \cdots, \Upsilon_M) : \mathbf{R}^m \to \mathbf{R}^M$ are homogeneous mappings of degrees $d = (d_1, \cdots, d_N)$ and $h = (h_1, \cdots, h_M)$, respectively such that $\Gamma \mid \mathbf{S}^{n-1}$ and $\Upsilon \mid \mathbf{S}^{m-1}$ are real-analytic and d_l , $h_s \neq 0$ for $1 \leq l \leq N$ and $1 \leq s \leq M$. In view of Lemmas 2.4-2.5, we shall only prove our theorem for the case $d_1, \cdots, d_N, h_1, \cdots, h_M > 0$. The argument for the other cases that some or all of the d_l 's and h_r 's are negative is similar and requires only minor modifications. If $\{\Gamma_l : d_l = d_1\} = \{0\}$ or $\{\Upsilon_s : h_s = h_1\} = \{0\}$, then $T_{\Gamma,\Upsilon,\Omega_\mu}$ is the zero operator and hence (3.7) holds trivially. Now, if $\{\Gamma_l : d_l = d_1\} \neq \{0\}$ and $\{\Upsilon_s : h_s = h_1\} \neq \{0\}$, by a simple reordering of the mappings $\Gamma_1, \cdots, \Gamma_N, \Upsilon_1, \cdots, \Upsilon_M$, if necessary, we may assume that there are z_1 , \tilde{z}_1 , w_1 and $\tilde{w}_1 \in \mathbf{N}$ such that $z_1 \leq \tilde{z}_1 \leq N$, $\{l : 1 \leq l \leq N \text{ and } d_l = d_1\} = \{1, \cdots, \tilde{z}_1\}$, $w_1 \leq \tilde{w}_1 \leq M$, $\{s : 1 \leq s \leq M \text{ and } h_s = h_1\} = \{1, \cdots, \tilde{w}_1\}$, $\{\Gamma_1, \cdots, \Gamma_{z_1}\}$ forms a basis for $span\{\Gamma_1, \cdots, \Gamma_{\tilde{z}_1}\}$ and $\{\Upsilon_1, \cdots, \Upsilon_{w_1}\}$ forms a basis for $span\{\Gamma_1, \cdots, \Gamma_{\tilde{z}_1}\}$ and $\{\Upsilon_1, \cdots, \Upsilon_{w_1}\}$ forms a basis for $span\{\Gamma_1, \cdots, \Gamma_{\tilde{z}_1}\}$

Let $\Phi_0 = \Gamma$, $\Phi_1 = (0, \dots, 0, \Gamma_{\tilde{z}_1+1}, \dots, \Gamma_N)$, $\Psi_0 = \Upsilon$, $\Psi_1 = (0, \dots, 0, \Upsilon_{\tilde{w}_1+1}, \dots, \Upsilon_M)$, and $\lambda_{k,j,\mu}^{(l,s)} = \lambda_{k,j,\Gamma_l,\Upsilon_s,\mu}$ for $l,s \in \{0,1\}$. Under the above assumptions, we have the following:

Lemma 3.1. There exist $L \in L(\mathbf{R}^{\tilde{z}_1}, \mathbf{R}^{z_1})$, $Q \in L(\mathbf{R}^{\tilde{w}_1}, \mathbf{R}^{w_1})$ and positive constants α_0 , β_0 and C such that

(3.9)
$$\left| \lambda_{k,j,\mu}^{(l,s)}(\xi,\eta) \right| \leq C(\mu+1)^2 \text{for } l,s \in \{0,1\};$$

$$(3.10) \quad \left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) \right| \leq C(\mu+1)^2 \left| a_{\mu}^{kd_1} L^{(0)}(\xi) \right|^{-\frac{\alpha_0}{\mu+1}} \left| a_{\mu}^{jh_1} Q^{(0)}(\eta) \right|^{-\frac{\beta_0}{\mu+1}};$$

$$(3.11) \left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(0,1)}(\xi,\eta) \right| \leq C(\mu+1)^2 \left| a_{\mu}^{kd_1} L^{(0)}\left(\xi\right) \right|^{-\frac{\alpha_0}{\mu+1}} \left| a_{\mu}^{jh_1} Q^{(0)}\left(\eta\right) \right|^{\frac{\beta_0}{\mu+1}};$$

$$(3.12) \left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(1,0)}(\xi,\eta) \right| \leq C(\mu+1)^2 \left| a_{\mu}^{kd_1} L^{(0)}(\xi) \right|^{\frac{\alpha_0}{\mu+1}} \left| a_{\mu}^{jh_1} Q^{(0)}(\eta) \right|^{-\frac{\beta_0}{\mu+1}};$$

$$(3.13) \quad \left| \hat{\lambda}_{k,j,\mu}^{(0,1)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(1,1)}(\xi,\eta) \right| \quad \leq \quad C(\mu+1)^2 \left| a_{\mu}^{kd_1} L^{(0)}\left(\xi\right) \right|^{\frac{\alpha_0}{\mu+1}};$$

$$(3.14) \quad \left| \hat{\lambda}_{k,j,\mu}^{(1,0)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(1,1)}(\xi,\eta) \right| \quad \leq \quad C(\mu+1)^2 \left| a_{\mu}^{jh_1} Q^{(0)}(\eta) \right|^{\frac{\beta_0}{\mu+1}};$$

$$\left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(0,1)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(1,0)}(\xi,\eta) + \hat{\lambda}_{k,j,\mu}^{(1,1)}(\xi,\eta) \right|$$

$$\leq C(\mu+1)^2 \left| a_{\mu}^{kd_1} L^{(0)}(\xi) \right|^{\frac{\alpha_0}{\mu+1}} \left| a_{\mu}^{jh_1} Q^{(0)}(\eta) \right|^{\frac{\beta_0}{\mu+1}},$$
(3.15)

for all $(\xi, \eta) \in \mathbf{R}^N \times \mathbf{R}^M$, where $L^{(0)}(\xi) = L(\Pi_{\tilde{z}_1} \xi)$, $Q^{(0)}(\eta) = Q(\Pi_{\tilde{w}_1} \eta)$, $\Pi_{\tilde{z}_1} \xi = (\xi_1, \dots, \xi_{\tilde{z}_1})$ and $\Pi_{\tilde{w}_1} \eta = (\eta_1, \dots, \eta_{\tilde{w}_1})$.

Proof. First, it is easy to verify that (3.9) holds trivially. Now, we prove (3.10). By assumptions, there exist two linear transformations $L = (L_1, \dots, L_{z_1}) \in L(\mathbf{R}^{\tilde{z}_1}, \mathbf{R}^{z_1})$ and $Q = (Q_1, \dots, Q_{w_1}) \in L(\mathbf{R}^{\tilde{w}_1}, \mathbf{R}^{w_1})$ such that

$$(3.16) \quad \sum_{l=1}^{\tilde{z}_1} \xi_l \Gamma_l(x) = \sum_{l=1}^{z_1} L_l(\Pi_{\tilde{z}_1} \xi) \Gamma_l(x) \text{ and } \sum_{s=1}^{\tilde{w}_1} \eta_s \Upsilon_s(y) = \sum_{s=1}^{w_1} Q_s(\Pi_{\tilde{w}_1} \eta) \Upsilon_s(y).$$

Thus we have

$$\left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) \right| \leq C(\mu+1) \int_{\mathbf{S}^{n-1}\times\mathbf{S}^{m-1}} \left| \Omega_{\mu}(x,y) \right| \left| \int_{1/a_{\mu}}^{1} e^{-iY_{\xi,k}(t,x)} \frac{dt}{t} \right| d\sigma(x) d\sigma(y),$$

where

$$(3.17) Y_{\xi,k}(t,x) = \left(\sum_{l=1}^{\tilde{z}_1} \xi_l \Gamma_l(x)\right) t^{d_1} a_{\mu}^{(k+1)d_1} + \sum_{s=\tilde{z}_1+1}^{N} \xi_s \Gamma_s(x) t^{d_s} a_{\mu}^{(k+1)d_s}.$$

Define $R: \mathbf{S}^{n-1} \times \mathbf{S}^{z_1-1} \to \mathbf{R}$ by

$$R(x, u) = \sum_{l=1}^{z_1} u_l \Gamma_l(x),$$

where $x \in \mathbf{S}^{n-1}$ and $u = (u_1, \dots, u_{z_1}) \in \mathbf{S}^{z_1-1}$. Since $\{\Gamma_1, \dots, \Gamma_{z_1}\}$ is linearly independent, $R(\cdot, u)$ is a nonzero function for every $u \in \mathbf{S}^{z_1-1}$. By Lemma 2.6, there exists a $\delta_1 > 0$ such that

(3.18)
$$\sup_{u \in \mathbf{S}^{z_1-1}} \int_{\mathbf{S}^{n-1}} |R(x,u)|^{-\delta_1} d\sigma(x) < \infty.$$

By letting $\varepsilon = \min\{1/d_1, 1/N, \delta_1/2\}, (3.2), (3.18)$ and Hölder's inequality, we get

$$\left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) \right| \leq C(\mu+1) \int_{\mathbf{S}^{n-1}\times\mathbf{S}^{m-1}} \left| \Omega_{\mu}(x,y) \right| \left| \sum_{l=1}^{z_1} L_l(\Pi_{\tilde{z}_1}\xi) \Gamma_l(x) \right|^{-\varepsilon} d\sigma(x) d\sigma(y)$$

$$\leq C(\mu+1)a_{\mu}^{-\varepsilon d_1} \left\|\Omega_{\mu}\right\|_{L^{2}(\mathbf{S}^{n-1}\times\mathbf{S}^{m-1})} \left|a_{\mu}^{kd_1}L(\Pi_{\tilde{z}_1}\xi)\right|^{-\epsilon}$$

$$\leq C(\mu+1)a_{\mu}^{-\varepsilon d_1}(a_{\mu})^{2} \left|a_{\mu}^{kd_1}L(\Pi_{\tilde{z}_1}\xi)\right|^{-\epsilon}.$$

Thus, by combining the last estimate with the trivial estimate $\left|\hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta)\right| \leq C(\mu+1)^2$, we get

(3.20)
$$\left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) \right| \le C(\mu+1)^2 \left| a_{\mu}^{kd_1} L(\Pi_{\tilde{z}_1}\xi) \right|^{-\epsilon/(\mu+1)}.$$

Similarly, we have

(3.21)
$$\left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) \right| \le C(\mu+1)^2 \left| a_{\mu}^{jh_1} Q(\Pi_{\tilde{w}_1}\eta) \right|^{-\beta/(\mu+1)}.$$

Combining the last two estimates yields (3.10). Next, we prove (3.11).

$$\left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(0,1)}(\xi,\eta) \right| \le \int_{1/a_{\mu}}^{1} \int_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}} \left| \Omega_{\mu}(x,y) \right| \times$$

$$\left|\int_{1/a_{\mu}}^{1}e^{-iY_{\xi,k}(t,x)}\frac{dt}{t}\right|\left|e^{-i\eta\cdot\Psi_{0}(a_{\mu}^{j+1}sy)}-e^{-i\eta\cdot\Psi_{1}(a_{\mu}^{j+1}sy)}\right|d\sigma(x)d\sigma(y)\frac{ds}{s},$$

where $Y_{\xi,k}(t,x)$ is given by (3.17). By a similar argument as that employed in the proof of (3.10) we get

$$\left| \hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(0,1)}(\xi,\eta) \right| \leq C(\mu+1) a_{\mu}^{-\varepsilon d_1} \left\| \Omega_{\mu} \right\|_2 \left| a_{\mu}^{kd_1} L^{(0)}\left(\xi\right) \right|^{-\varepsilon} \left| a_{\mu}^{(j+1)h_1} Q^{(0)}\left(\eta\right) \right|$$

which when combined with the trivial estimate $\left|\hat{\lambda}_{k,j,\mu}^{(0,0)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(0,1)}(\xi,\eta)\right| \leq C(\mu + 1)^2$ yields (3.11). Similarly, we get (3.12)-(3.15). The proof of the lemma is complete.

Similarly, by using (3.1)-(3.3) we can find additional mappings Φ_2, \dots, Φ_K from $\mathbf{R}^n \setminus \{0\}$ to $\mathbf{R}^N, \Psi_2, \dots, \Psi_J$ from $\mathbf{R}^m \setminus \{0\}$ to $\mathbf{R}^M, \{\alpha_l, \beta_s : 1 \leq l \leq K-1, 1 \leq s \leq J-1\} \subset (0, \infty)$, appropriate linear transformations $\{L^{(l)}, Q^{(s)} : 1 \leq l \leq K-1, 1 \leq s \leq J-1\}$, two sets of distinct real numbers $\{d_{u_l} : 1 \leq l \leq K-1\}$, $\{h_{v_s} : 1 \leq s \leq J-1\}$ with $\{d_{u_l} : 1 \leq l \leq K-1\} = \{d_l : 2 \leq l \leq N\} \setminus \{d_1\}$, $\{h_{v_s} : 1 \leq s \leq J-1\} = \{h_s : 2 \leq s \leq M\} \setminus \{h_1\}$ and a finite family of measures $\{\lambda_{k,i,\mu}^{(l,s)} : 2 \leq l \leq K, 2 \leq s \leq J\}$ with the following properties:

$$\begin{split} \Phi_{K} &= (0, \cdots, 0), \ \Psi_{J} = (0, \cdots, 0); \\ \lambda_{k,j,\mu}^{(l,s)}(\xi, \eta) &= \lambda_{k,j,\mu,\Phi_{l},\Psi_{s}} \text{ for } 2 \leq l \leq K \text{ and } 2 \leq s \leq J; \\ \lambda_{k,j,\mu}^{(K,s)} &= \lambda_{k,j,\mu}^{(l,J)} = 0 \text{ for } 2 \leq l \leq K \text{ and } 2 \leq s \leq J; \end{split}$$

(3.22)
$$\left| \lambda_{k,j,\mu}^{(l,s)}(\xi,\eta) \right| \le C(\mu+1)^2;$$

$$\left| \hat{\lambda}_{k,j,\mu}^{(l,s)}(\xi,\eta) \right| \le C(\mu+1)^2 \left| a_{\mu}^{kd_{u_l}} L^{(l)}(\xi) \right|^{-\frac{\alpha_l}{\mu+1}} \left| a_{\mu}^{jh_{vs}} Q^{(s)}(\eta) \right|^{-\frac{\beta_s}{\mu+1}}$$

$$\left| \hat{\lambda}_{k,j,\mu}^{(l,s)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(l+1,s)}(\xi,\eta) \right| \leq C(\mu+1)^2 \left| a_{\mu}^{kd_{u_l}} L^{(l)}(\xi) \right|^{\frac{\alpha_l}{\mu+1}} \left| a_{\mu}^{jh_{vs}} Q^{(s)}(\eta) \right|^{-\frac{\beta_s}{\mu+1}};$$

$$\left| \hat{\lambda}_{k,j,\mu}^{(l,s)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(l,s+1)}(\xi,\eta) \right| \leq C(\mu+1)^2 \left| a_{\mu}^{kd_{u_l}} L^{(l)}(\xi) \right|^{-\frac{\alpha_l}{\mu+1}} \left| a_{\mu}^{jh_{vs}} Q^{(s)}(\eta) \right|^{\frac{\beta_s}{\mu+1}};$$

$$\left| \hat{\lambda}_{k,j,\mu}^{(l,s+1)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(l+1,s+1)}(\xi,\eta) \right| \le C(\mu+1)^2 \left| a_{\mu}^{kd_{u_l}} L^{(l)}(\xi) \right|^{\frac{\alpha_l}{\mu+1}};$$

$$\left| \hat{\lambda}_{k,j,\mu}^{(l,s)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(l+1,s+1)}(\xi,\eta) \right| \le C(\mu+1)^2 \left| a_{\mu}^{jh_{vs}} Q^{(s)}(\eta) \right|^{\frac{\beta_s}{\mu+1}};$$

$$\left| \hat{\lambda}_{k,j,\mu}^{(l,s)}(\xi,\eta) - \hat{\lambda}_{k,j,\mu}^{(l,s+1)} - \hat{\lambda}_{k,j,\mu}^{(l+1,s)} + \hat{\lambda}_{k,j,\mu}^{(l+1,s+1)}(\xi,\eta) \right|$$

$$\leq C(\mu+1)^2 \left| a_{\mu}^{kd_{u_l}} L^{(l)}(\xi) \right|^{\frac{\alpha_l}{\mu+1}} \left| a_{\mu}^{jh_{vs}} Q^{(s)}(\eta) \right|^{\frac{\beta_s}{\mu+1}}$$
(3.28)

for $1 \le l \le K-1$ and $1 \le s \le J-1$. By (3.3) and Lemma 2.3, we immediately get

(3.29)
$$\left\| \sup_{k,j \in \mathbb{Z}} \left\| \lambda_{k,j,\mu}^{(l,s)} * f \right\| \right\|_{p} \le C_{p}(\mu + 1)^{2} \left\| f \right\|_{p}$$

for $1 , <math>0 \le l \le K-1$ and $0 \le s \le J-1$. By (3.9)-(3.15), (3.22)-(3.28), Lemma 2.8, we have

(3.30)
$$\left\| T_{\Gamma,\Upsilon,\Omega_{\mu}} (f) \right\|_{p} = \left\| \sum_{k,j \in \mathbf{Z}} \lambda_{k,j,\mu}^{(0,0)} * f \right\|_{p} \le C_{p} (\mu + 1)^{2} \|f\|_{p}$$

for $1 and <math>f \in L^p(\mathbf{R}^n \times \mathbf{R}^m)$ which completes the proof of (3.7).

We can construct a proof of (3.8) by using the above estimates and the techniques developed in [3]. We omit the details.

References

- [1] A. Al-Salman, H. Al-Qassem and Y. Pan, Singular integrals associated to homogeneous mappings with rough kernels, Hokkaido Mathematical Journal, 33(2004), 551-569.
- [2] A. Al-Salman, H. Al-Qassem and Y. Pan, Singular Integrals on Product Domains, Indiana Univ. Math. J., 55(1)(2006), 369-387.

- [3] H. Al-Qassem and Y. Pan, L^p boundedness for singular integrals with rough kernels on product domains, Hokkaido Math. J., 31(2002), 555-613.
- [4] A. Al-Salman and Y. Pan, Singular integrals with rough kernels in $Llog^+L(\mathbf{S}^{n-1})$, J. London Math. Soc., **66(2)**(2002), 153-174.
- [5] Calderón, A. P. and Zygmund, A., On singular integrals, Amer. J. Math., 78(1956), 289-309.
- [6] L. Cheng, Singular integrals related to homogeneous mappings, Michigan Math. J., 47(2)(2000), 407-416.
- [7] J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Ins. Fourier (Grenoble), **36**(1986), 185-206.
- [8] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal functions and singular integral operators via Fourier transform estimates, Invent. Math., 84(1986), 541-561.
- [9] D. Fan, K. Guo and Y. Pan, Singular integrals with rough kernels on product spaces, Hokkaido Math. J., 28(1999), 435-460.
- [10] D. Fan, K. Guo and Y. Pan, L^p estimates for singular integrals associated to homogeneous surfaces, J. Reine Angew. Math., 542(2002), 1-22.
- [11] R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc., 4(1981), 195-201.
- [12] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math., 45(1982), 117-143.
- [13] Y. Jiang and S. Lu, A class of singular integral operators with rough kernels on product domains, Hokkaido Math. J., 24(1995), 1-7.
- [14] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals, Jour. Func. Anal., 73(1987), 179-194.
- [15] F. Ricci and E. M. Stein, Multiparameter singular integrals and maximal functions, Ann. Inst. Fourier, 42(1992), 637-670.
- [16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, NJ, 1970.
- [17] E. M. Stein, Harmonic analysis real-variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.