• Title/Summary/Keyword: single-stage actuator

Search Result 27, Processing Time 0.026 seconds

Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting (미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공)

  • Kim Gi Dae;Loh Byoung-Gook;Hwang Kyung-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.

Reduction of the actuator oscillations in the flying vehicle under a follower force

  • Kavianipour, O.;Khoshnood, A.M.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.149-166
    • /
    • 2013
  • Flexible behaviors in new aerospace structures can lead to a degradation of their control and guidance system and undesired performance. The objectives of the current work are to analyze the vibration resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects on the oscillation of its actuators. Simulation results show that such a control model provides an effective way to reduce the undesirable oscillations of the actuators.

Controller Design of Piezoelectric Milliactuator for Dual Stage System (이중 구동 시스템을 위한 압전 밀리엑추에이터의 제어기 설계)

  • Eo-Jin, Hong;No-Cheol, Park;Hyun-Seok, Yang;Young-Pil, Park
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.965-971
    • /
    • 2003
  • To reach high areal density, less track pitch is expected and more servo bandwidth is required. One approach to overcoming the problem is by using dual stage servo system. For this system. we have suggested new milliactuator based on the shear mode of piezoelectric elements to drive the head suspension assembly. In this paper, we introduce milliactuator and controller design method, PQ method. PQ method reduces the controller design problem for DISO (dual-input/single-output) systems to two standard controller design problems for SISO ( single-input/single-output) problems. The first part of PQ method directly addresses the issue of actuator output contribution, and the second part allows the use of traditional loop shaping to achieve the overall system performance. This paper shows how to employ the PQ method to meet aggressive close-loop performance specifications for a disk drive system with a VCM and piezoelectric milliactuator.

Modeling Technique and Controller Design for Slewing Smart Structure (회전구조물의 모델링 개선 및 제어기 설계)

  • Kwak, Moon-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.674-679
    • /
    • 2000
  • This research is concerned with the modeling technique and active vibration controller design for slewing smart structures. When cantilever beam rotates about axes perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates from the initial stage of slewing, In this paper, the analytical model for a single slewing flexible beam with surface bonded piezoelectric sensor and actuator is developed using the Hamilton's principle with discretization by the assumed mode method. It is found from experiments that the theoretical model lacks the frictional effect. The frictional effect is incorporated into the equations of motion by employing the coupling factor. Theoretical and experimental results show problems arising in modeling and controller design.

  • PDF

Micro Thermal Design of Swing-Arm Type Small Form Factor Optical Pick-up System (스윙 암 타입 초소형 광 픽업 시스템의 방열 설계)

  • Lee, Jee-Na;Kim, Hong-Min;Kang, Shin-Ill;Sohn, Jin-Seung;Lee, Myung-Bok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • The new multimedia information environment requires smaller optical data storage systems. However, one of the difficulties encountered in designing small form factor(SFF) optical pick-up is to emit the heat which is generated from laser diode(LD). Heat generated at the LD can reduce the optical performance of the system and the lifetime of LD. Therefore, it is important to include the thermal design in the design stage of SFF optical pick-up system for high performance and the longer lifetime of LD, and furthermore, to analyze the thermal characteristics of LD in detail micro heat transfer analysis is necessary. In the present study, micro heat transfer analysis was performed using the finite element method for the $28{\times}11{\times}2mm^3$ super slim swing-arm type optical pick-up actuator for Blu-ray disk. Two different materials were used for a swing-arm; a double layer polycarbonate/steel structure and a single aluminum structure.

  • PDF

The Development of Confocal Microscopy Using the Amplified Double-compound Flexure Guide (레버 증폭 구조의 플렉서를 이용한 공초점 현미경의 개발)

  • Lee, Sang-Won;Kim, Wi-Han;Jung, Young-Dae;Park, Min-Kyu;Kim, Jee-Hyun;Lee, Sang-In;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A confocal microscope was developed utilizing a scanning sample stage based on a home-built double-compound flexure guide. A scanning sample stage with nano-scale resolution consisted of a double leaf spring based flexure, a displacement amplifying lever, a Piezo-electric Transducer(PZT) actuator and capacitance sensors. The performance of the two-axis stage was analyzed using a commercial finite element method program prior to the implementation. A single line laser was employed as the light source along with the Photo Multiplier Tube(PMT) that served as the detector. The performance of the developed confocal microscope was evaluated with a mouse ear skin imaging test. The designed scanning stage enabled us to build the confocal microscope without the two optical scanning mirror modules that are essential in the conventional laser scanning confocal microscope. The elimination of the scanning mirror modules makes the optical design of the confocal microscope simpler and more compact than the conventional system.

Atmospheric Turbulence Simulator for Adaptive Optics Evaluation on an Optical Test Bench

  • Lee, Jun Ho;Shin, Sunmy;Park, Gyu Nam;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However, this type of prediction based on various assumptions can occasionally produce outcomes which are far from actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop on an optical test bench before its application to a telescope. In the close-loop test bench, we need an atmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial and temporal behavior. We report the development of an atmospheric turbulence simulator consisting of two point sources, a commercially available deformable mirror with a $12{\times}12$ actuator array, and two random phase plates. The simulator generates an atmospherically distorted single or binary star with varying stellar magnitudes and angular separations. We conduct a simulation of a binary star by optically combining two point sources mounted on independent precision stages. The light intensity of each source (an LED with a pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is precisely adjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance, i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmospheric model and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirror is then continuously best-fitted to the time-sequenced phase screens based on the least square method. Similarly, we also implement another simulation by rotating two random phase plates which were manufactured to have atmospheric-disturbance-like residual aberrations. This later method is limited in its ability to simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods, individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatory in South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameter at a telescope pupil plane of 500 nm.